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A B S T R A C T

To reduce CPU time in compositional petroleum simulation models (e.g. compositional reservoir simulations), a
minimum number of components should be used in the equation of state (EOS) to describe the fluid phase and
volumetric behavior. A ″detailed” EOS model often contains from 20 to 40 components, with the first 10
components representing pure compounds and the remaining components represent a split of the heavier +C6
material in single-carbon-number (SCN) fractions. A ″pseudoized” (or lumped) EOS model might contain only
6–9 lumped components. The selection of which components to lump together is difficult because of the huge
number of possible combinations.

This paper describes an automated method to find the best pseudoized EOS model based on an initial detailed
SCN EOS model. The method is based on (1) a fitness function quantifying the quality of match between a
pseudoized EOS model and the detailed SCN EOS model from which it is derived, (2) a genetic algorithm used to
obtain a first initial solution and (3) a tabu search to refine this initial solution and find the optimal lumping
scheme. The method allows for a set of constraints to be imposed on the lumping of components, such as (1) not
lumping certain components (e.g. CO2), (2) forcing lumping of some components (e.g. i C4 and n C4).

The proposed procedure was successfully able to find the optimal lumped EOS from a detailed SCN EOS with
34 components for three scenarios with different number of components in the lumped EOS (15, 9 and 6). The
runtime is ranging from 10 to 45min.

1. Introduction

1.1. Equation of state

Cubic Equations of State (EOS's) are simple equations relating
pressure, volume and temperature. They accurately describe the volu-
metric and phase behavior of pure compounds and mixtures.
Volumetric behavior is calculated by solving a simple cubic equation,
usually expressed in terms of =Z pv nRT/ :

+ + + =Z A Z A Z A 0,3
2

2
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where constants A0, A1 and A2 are functions of pressure, temperature,
mixture composition, component properties (critical properties and
acentric factor) and binary interaction parameters (BIP's). Phase equi-
libria are calculated by satisfying the condition of chemical equili-
brium. For a two-phase system, the chemical potential of each com-
ponent in the vapor phase µiV must equal the chemical potential of each
component in the liquid phase µiL, meaning that:

=µ x p T v µ y p T v( , , , ) ( , , , ).i iL V (2)

The most famous EOS used in the oil & gas industry are the Soave-
Redlick-Kwong (SRK) EOS (Soave, 1972) and the Peng-Robinson (PR)

EOS (Peng and Robinson, 1976).

1.2. EOS fluid characterization

Reservoir fluid is usually sampled at perforation level (bottomhole
sample) or at surface (separator sample) and analyzed in a specialized
laboratory. Several lab measurements are performed on the sample:
chromatography to measure the sample composition (molar fraction of
pure components and isomers) and depletion experiments (e.g.
Constant Composition Depletion, Constant Volume Depletion) which
simulate the reservoir depletion process and measure some gas and oil
properties at each stage of the depletion. Some of the component
properties (usually boiling point and specific gravity) are measured, but
it is very expensive to measure all properties (e.g. critical properties and
acentric factor). These properties are usually estimated from correla-
tions, see for example Riazi and Daubert (1980) or Souahi and
Kaabeche (2008).

The lab measurements are used to build a detailed SCN EOS model.
Some key parameters of the EOS model (e.g. BIP's) are tuned to predict
the lab measurements with a good degree of accuracy.
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1.3. EOS lumping

To reduce CPU time in compositional petroleum simulation models
(e.g. compositional reservoir simulations), a minimum number of
components should be used in the equation of state (EOS) to describe
the fluid phase and volumetric behavior. A ″detailed” EOS model often
contains from 20 to 40 components, with the first 10 components re-
presenting pure compounds H S2 , CO2, N2, C1, C2, C3, i C4, n C4,
i C5, and n C5. The remaining components represent a split of the
heavier +C6 material in single-carbon-number (SCN) fractions such as
C6, C7, C8 and C9, or groups of SCN fractions such as C10 12, C13 19,
C20 29, and +C30 . Occasionally the light aromatics BTX (benzene, to-
luene, and xylene isomers) are also kept as separate components for
process modeling. Today's typical laboratory compositional analysis
provides 50–60 components, including isomers with carbon numbers 6
to 10, SCN fractions out to C35 and a residual +C36 . This is in contrast to
the 11–12 components (through +C7 ) reported in most commercial la-
boratory reports pre-1980.

A pseudoized (or lumped) EOS model might contain only 6–9
lumped components e.g. lumping similar components such N2 and C1,
i C4, n C4, i C5, and n C5, and some 3–5 +C6 fractions. The se-
lection of which components to lump together is difficult because of the
huge number of possible combinations.

Let us assume that a detailed SCN EOS model, EOSxx, consisting of
Nxx components is available and represents with a satisfying degree of
accuracy the measured lab data. For some reasons, a lumped EOS,
EOSx, is required with Nx components.

Creating a lumped EOS with Nx components from a detailed EOS
with Nxx components consists of choosing where to place N 1x se-
parators in the N 1xx possible separation locations, see Figs. 1 and 2.
Thus, the number of possible lumping scenarios Nscenarios is given by:
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For example, with =N 34xx and =N 9x , there are
=N 13,884,156scenarios possible lumping schemes.

The obvious application of pseudoized EOS models is compositional
reservoir simulation, where run time is an important issue and fewer
components may be important. Lumped EOS are also widely used in
well and network simulators for run time reduction. Alavian et al.
(2014) note that there might numerous optimal lumped EOS models,
each optimal for a particular application, e.g. one for reservoir, another
for flow assurance, and yet another for processing facility. The origi-
nating detailed SCN EOS model used to develop the different lumped
EOS models is likely to be the same, but the number of pseudo-com-
ponents might vary for each application, together with the sub-space of
(p-T-z).

On the one hand, lumped EOS enables to lower considerably the
runtime of some discipline specific applications (e.g. reservoir simu-
lator). On the other hand, the lumping scheme can have major impact
on the accuracy of the EOS predictions, see Fig. 3.This is why finding
the optimal EOS lumping scheme is important. For the same number of
pseudo-components (i.e. the same runtime in engineering software
applications), fluid behavior predictions can be significantly different,
see Fig. 3.

Lee et al. (1982) suggest that +C7 fractions can be grouped into two
pseudo-components according to a characterization factor determined

by averaging the tangents of fraction properties molecular weight,
specific gravity, and Jacoby factor plotted vs. boiling point. Whitson
(1983) suggests a method to estimate the number of +C7 fractions, and
how they should be grouped. Coats (1985) discusses in detail lumping
of +C7 fractions for modeling the vaporization process in gas condensate
cycling. He gives a set of fundamental criteria and methods to calculate
the EOS parameters of lumped pseudo-components. The impact of
lumping on PVT model quality and reservoir simulation modeling of a
gas cycling process is also shown. Behrens and Sandler (1988) suggest a
grouping method for +C7 fractions based on application of the Gaussian-
quadrature method used in continuous thermodynamics. Whitson et al.
(1989) show that any +C7 molar-distribution can be modeled with the
Gamma distribution with any number of pseudo-components. Other
pseudoization methods have been proposed by Montel and Gouel
(1984), Li et al. (1985), Newley and Merrill (1991), Danesh et al.
(1992) and Hustad and Dalen (1993). However, none of them ensures
that the lumping scheme is optimal.

Alavian et al. (2014) present a comprehensive method to find an
optimal pseudoized EOS model to describe all PVT data that is relevant
to a particular reservoir development (e.g. depletion performance,
miscible gas injection, compositional variation, surface processing). The
method tests all possible lumping scenarios and assess the quality of
individual scenarios by quantifying its mismatch from the detailed EOS
model using a root mean square (RMS) error ( RMS):
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(4)Fig. 1. Example of a detailed EOS with Nxx components.

Fig. 2. Example of a lumping scheme from an EOS with Nxx components into an
EOS with Nx components.

Fig. 3. Comparison of several lumped EOS schemes with the same number of
components (6) with different degrees of accuracy compared to the original
EOS model (34 components).
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with wi a set of weight factor and ri the residual for data i defined as:

=r
d d

d
100 ,i

i x i xx

i ref

, ,

, (5)

where di x, is the PVT data calculated with the lumped EOS, di xx, with the
detailed EOS and di ref, is a reference value taken as the maximum of all
dxx data of a given type (e.g. oil density) in a given simulated lab test
(e.g. CCE).

1.4. Genetic algorithm

A genetic algorithm (GA) is a heuristic method inspired by the
process of natural selection that belongs to the larger class of evolu-
tionary algorithms (EA) (Mitchell, 1998). A simple GA consists of three
operators (see Fig. 4):

Selection: This operator selects chromosomes in the population for
reproduction. The fitter the chromosome, the more times it is likely to
be selected to reproduce.

Crossover: This operator roughly mimics biological recombination
between two organisms.

Mutation: This operator randomly flips some of the bits in a
chromosome. Mutation can occur at each bit position in a string with
some probability, usually very small (e.g. 0.1–1%).

Turing (1950) proposed a “learning machine” that could follow the
principle of evolution. Barricelli (1957) and Fraser (1957) were the first
publications about GAs per say. GAs became very popular in the 1970s
through the work of Holland (1975) (and his schema theorem). Since
then, many papers about GAs have been published. Several selection,
crossover and mutation have been tested. Mitchell (1998) gives a
comprehensive review of GAs.

GAs have been widely used in the oil & gas industry. For example,
Camargo et al. (2010) use a GA to optimize oil production and gas lift
injection. Sarvestani et al. (2012) use a specially designed genetic al-
gorithm to search for suitable regression parameters to match the EOS
against measured data. The main advantage of the proposed method is
(1) its high speed in finding a solution and (2) the multiple final solu-
tions being found, and thereby confining the role of experts to the last
stage when selecting among the multiple final solutions. To the author's
knowledge, GA was never used to find the optimal lumping scheme.

1.5. Tabu search algorithm

Tabu1 search algorithm, first introduced by Glover (1986) and for-
malized by Glover (1989) and Glover (1990), is an heuristic search
method employing local search methods used for mathematical opti-
mization.

Tabu search uses a local (or neighborhood search) procedure to
iteratively move from one potential solution x to an improved solution
x in the neighborhood N x( ) of x , until some stopping criterion has
been satisfied. The neighborhood N x( ) usually consists of the closest
admissible point around the current point x . Local search procedures
(e.g. gradient descent) often become stuck at a local minimum. In order
to explore regions of the search space that would be left unexplored by
other local search procedures, tabu search allows to choose neighbors x
that worsens the objective (if no improving move is available).

To avoid looping between two solutions, some neighbors are banned
and stored in the tabu listLT . Usually, the tabu list contains the points
that have been previously visited. The length of the tabu listLT defines
the memory of the algorithm and is usually a setting parameter.

The stopping criterion is usually an attempt limit or a score
threshold or a maximum number of iterations without improvement.
Fig. 5 shows the typical workflow of a tabu search and Fig. 6 shows a

schematic example of a typical tabu search.
Tabu search algorithms have been used extensively for integer

programming purposes over the years. For example, Hansen et al.
(1992) discuss the application of a tabu search algorithm to optimally
find the location and sizing of offshore platforms.

1.6. Proposed approach

This paper is the first attempt to propose an optimization algorithm
to optimally lump components from a detailed SCN EOS model (EOSxx)
into a simplified EOS model (EOSx). It is assumed in this paper that the
pseudo-components in the initial SCN EOS model are ordered by as-
cending molecular weight. The proposed approach uses a GA to quickly

Fig. 4. Workflow of a genetic algorithm (adapted from Liao et al., 2001). The
criterion can be (1) a number of generations or (2) a time criteria or (3) a
minimum (or maximum) value for the objective function to maximize (or
minimize).

Fig. 5. Workflow of a typical tabu search.

1 The word tabu comes from the Tongan word to indicate things that cannot
be touched because they are sacred.
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obtain an initial good solution. This initial solution is then refined using
a tabu search algorithm.

2. Proposed algorithm

2.1. Chromosome

In this section, a lumping scheme will be called a chromosome. For a
starting EOS with Nxx components, chromosomes have N 1xx bits (bk
with k N[1, 1]xx ). Each bit represent the separation between two
sub-sequent components in the detailed EOS, see Fig. 7: (1) =b 1k
means that there is a separation between components k and +k 1, (2)

=b 0k means that the sub-sequent components k and +k 1 are lumped
into a single pseudo-component.

The final EOS having Nx pseudo-components,

=
=

b N 1
k

N

k x
1

1xx

(6)

This is a survival criteria for chromosomes.

2.2. Fitness function

In this paper, we use the inverse of the RMS as fitness function:

=f 1 ,
RMS (7)

with RMS define in Eqs. (4) and (5). It is computed based on 1200 lab
measurements and EOS predictions obtained with the lumped EOS
model (EOSx). Lab measurements include a CCE and a separator test for
5 different fluid (lean and rich gas condensate, critical oil, volatile and
less volatile oil). All lab measurements can be found in Appendix A.

2.3. Proposed genetic algorithm

2.3.1. Selection method
Fitness Proportionate. In this paper, we use a Fitness Proportionate

Selection (FPS) method In this selection method, also known as roulette
wheel selection, chromosome i has a probability pi to be selected:

=
=

p
f

f
,i

i

j
N

j1
c

(8)

where fi is the fitness of chromosome i and Nc is the number of chro-
mosomes in the population.

Fitness proportionate selection (FPS) was originally proposed by
Holland (1975). The major issue with FPS lies in the early stage of the
search: fitness variance in the population is high and a small number of
chromosomes are much fitter than others. With FPS, these fitter chro-
mosomes will multiply quickly preventing the GA to explore further the
search space. This is known as premature convergence (Mitchell, 1998).

Mitchell (1998) notes that the selection operator needs to be ba-
lanced between exploitation and exploration: a too-strong selection can
lead to suboptimal solutions while too-weak selection results in too-
slow evolution. Mitchell (1998) reviews the most utilized selection
methods implemented for genetic algorithm. Goldberg and Deb (1991),
Bäck and Hoffmeister (1991), De la Maza et al. (1991) and Hancock
(1994) provide a rigorous comparison of different selection methods.
No other selection method was tested in this paper.

Elitism. De Jong (1975) introduce an additional logic that forces the
GA to select a certain number of the best chromosomes at each gen-
eration. Elitism can be applied to any selection method and could sig-
nificantly improve the GA's performances. In this paper, elitism is used
together with FPS.

Population Sampling. The simplest sampling method consist of
choosing a random number r [0,1] and selecting the chromosome i

Fig. 6. Schematic illustration of a tabu search.

Fig. 7. Example of a chromosome with N 1xx bits.
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verifying:

<
= =

p r p rand
j

i

j
j

i

j
1 1

1

(9)

This procedure is applied Np times to select Np parents. This sto-
chastic method should normally respects the probability distribution
p( )i . However, with the relatively small population used in GAs, it is
usually not the case. Baker (1987) propose a different sampling method
(Stochastic Universal Sampling or SUS) that solves this issue. Instead of
spinning the wheel Np times, SUS spins the wheel once with Np equally
separated pointers which are used to select the Np parents. SUS is used
in this paper.

2.3.2. Crossover
Many crossover operators haven been proposed in the literature.

Single-point crossover (see Fig. 8) is the simplest form (Mitchell, 1998).
Other more complex crossover operators (two-point crossover, uni-
form) have been covered and analyzed (Gwiazda, 2006).

However, in the problem of EOS lumping optimization, Eq. (6) must
be verified for all chromosomes. Most of the crossover strategies are not
suited for this additional constraint, see Fig. 8. Simple crossover stra-
tegies likely yield infeasible children which must be discarded. This
eventually can lead to reduced exploration of the search space.

The proposed crossover algorithm uses two parents P1 and P2 among
the pool of parentsSp and generate one child chromosome that verifies
Eq. (6), see Fig. 9. Bits that are identical in both parents are transferred
to the child. These bits are represented in blue in Fig. 9. The remaining
“1” necessary to honor Eq. (6) are randomly chosen among the fol-
lowing set:

…
= =:k N

b P b P

b P b P
{1, , 1}

( ) 1 or ( ) 1
and

( ) ( )
xx

k k

k k

1 2

1 2 (10)

where b P( )k i is the bit k of parent Pi. These bits are represented in red in
Fig. 8. Appendix B gives the proposed crossover algorithm. The pro-
posed algorithm is somewhat similar to the uniform crossover, but it
always ensures the creation of a feasible child.

2.3.3. Mutation
Mutation is an operator ensuring the population against fixation at

any particular locus (Mitchell, 1998). Crossover and mutation have the
same ability for population disruption. Some comparative studies have
been performed on the power of mutation versus crossover, see Spears
et al. (1992), Luke and Spector (1998) and White and Poulding (2009).

In the problem of EOS lumping optimization, a chromosome must
honor Eq. (6) after mutation. Classical mutation operator are likely to
transform feasible chromosomes into infeasible chromosomes. A dif-
ferent approach is used in this study. If a chromosome is selected for
mutation, one of its bits bk verifying (1) =b 1k and (2) =b 0k 1 or

=+b 0k 1 is randomly chosen. The chosen bit bk is set to 0 and the 1 is
transferred to one of its neighbor bits (bk 1 or +bk 1), see Fig. 10.
Appendix B gives the proposed algorithm.

2.3.4. GA parameters
Table 1 gives the main settings of the GA used in this study.

2.4. Tabu search algorithm

The Tabu search algorithm starts from the best solution obtained by
the GA after 10 generations. The tabu list is empty at the beginning
(LT).

At each iteration, the neighbors of the current point have to be
determined. A neighbor is cerated by moving one bit bk whose value is
one, to the left or to the right, see Fig. 11. When creating a lumped
EOSx with Nx components, a maximum of N2 ( 1)x such neighbors are
possible.

Neighbors that are part of the tabu list are discarded. The remaining
neighbors are then evaluated and the neighbor giving the lowest RMS is
chosen for the next iteration.

The stopping criterion is expressed as a limit number of iterations
without objective improvements. In this study, this parameter is set to
10. In addition, the limit of the tabu list is not constrained (i.e. infinite).
This ensures that no point will be chosen two times.

3. Results and discussion

In this section, we assume that a detailed SCN EOS consisting of 34
components, EOS-34, represents with a good degree of accuracy the lab
data. Three lumping scenarios are tested:

Fig. 8. Example of a single-point crossover between two parent chromosomes.
The resulting children do not verify the survival criteria defined by Eq. (6).

Fig. 9. Illustration of the proposed crossover operator. The resulting child al-
ways verifies the survival criteria given by Eq. (6).

Fig. 10. Illustration of the proposed mutation operator. The resulting child
always verifies the survival criteria given by Eq. (6).

Table 1
Parameters used in the proposed GA.

Parameter Value

Population size 50
Mutation rate 5%
Elit size 10
Selection method FPS
Number of generations 10

Fig. 11. Example of neighbors of a given solution.
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1. Lumping EOS-34 into EOS-15 (10 light components fixed)
2. Lumping EOS-34 into EOS-9 (3 light components fixed)
3. Lumping EOS-34 into EOS-6 (no component fixed)

The optimal solutions are shown in Fig. 12. The same optimal so-
lution from Alavian et al. (2014) are obtained. Note that only the
weighted RMS is used in the fitness function, while Alavian et al. (2014)
also consider the minimum miscibility pressure (MMP).

The key PVT property predictions (1200 measurements) using the

optimal lumped EOSx models from Fig. 12 are shown in A. These can be
compared with the original, detailed EOSxx model calculations. Overall the
optimal lumped EOSx models provide very accurate PVT predictions.

The performances of the proposed optimization solution are shown
in Table 2. The proposed solution converges approximately 90% of the
times towards the best lumping solution (known from Alavian et al.
(2014)). In approximately 10% of the cases, the optimization algorithm
is attracted by a local minimum and the proposed settings of the GA and
tabu search do not allow to exit the attraction basin. A solution to
improve the convergence rate consists of increasing the limit number of
iterations without objective improvement in the tabu search. In this
study, this parameter was held constant and equal to 10. Note that this
will also impact the average runtime of the solution.

Compared to Alavian et al. (2014), the number of cases being run is
independent of the initial EOS (EOSxx) and final EOS (EOSx). For case
3, only 0.28% of the possible lumping schemes are actually being run,
leading to significant savings in execution time. The execution time is
less than an hour, allowing the user to re-run the solution. If run two
times, the solution has a 0.01% probability of not converging towards
the best solution. In general, if run N times, the solution has a 0. 1N

probability of not finding the optimal lumping scheme.
The observed difference in execution time (ranging from 15min to

45min) is primarily due to the PVT simulations being more time-con-
suming when the number of components increases.

Fig. 13 shows the evolution of the genetic algorithm. The average
RMS is slowly decreasing, as fittest lumping schemes are chosen and
combined together. However, the best lumping scheme after 10

Fig. 12. Optimal solutions for the three scenarios. User-defined pseudo-com-
ponents are shown in green, and optimized pseudo-components are shown in
red. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Table 2
Summary of the three cases.

Key Performance Index Case-1 Case-2 Case-3

Number of simulation 30 30 100
Convergence towards the best solution 26 26 92
Success rate 86.7% 86.7% 92%
Best RMS 1.249% 1.265% 2.016%
Average RMS when non-convergence 1.26% 1.81% 4.55%
Average total execution time 45min 43s 22min 20s 14min 24s
Average number of model evaluations

(GA)
510 510 510

Average number of model evaluations
(Tabu)

95 133 165

Average total number of model
evaluations

605 643 675

Number of possible lumping schemes 8855 142506 237336
Proportion of possible lumping schemes

being run
6.83% 0.45% 0.28%

Fig. 13. Evolution of the genetic algorithm for case 3 (lumping of EOS-34 into
EOS-6).
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generations is relatively far from the best solution (RMS of 3.8% vs.
2.016% for the best solution).

This slow GA convergence was the primary motivation to include a
tabu search. The best solution obtained from the GA is used as starting
point for the tabu search, see Fig. 14. Convergence towards the best
solution is achieved within a couple of iterations. Note that each tabu
search generation only evaluates the neighbors around the current
search point. Therefore, a tabu search iteration is considerably less
costly than a GA generation (evaluation of the entire population).

Fig. 15 shows an example of the exploration of the search space by
the tabu search algorithm.

In addition, tabu search has the capability of exiting local minimum
attraction basin and continuing exploration. This characteristic is very
useful in the case of EOS lumping, as many lumping schemes can be
local RMS minima, see Fig. 16.

Fig. 17 shows how the tabu search can exit a local attraction basin
and continue the exploration to finally converge towards the best so-
lution.

4. Conclusions

• We proposed a new optimization algorithm to optimally lump a
detailed SCN EOS (EOSxx) into a simplified EOS (EOSx). The algo-
rithm consists of a genetic algorithm and a tacu search. The genetic

algorithm is used to find a good starting point for the tabu search
which is then refined by a tabu search.
• The proposed solution is tested for three lumping scenarios. It
converges in 90% of the cases. The number of lumping schemes
being evaluated is independent of the initial and final EOS. Only a
small proportion (ranging from 0.2 to 7%) of the total number of
possible lumping schemes is evaluated, leading to significantly re-
duced run time.
• Future improvement could include multiple starting points for the
tabu search to improve the convergence rate and more complex
fitness functions (e.g. including MMP). More complex PVT simula-
tions will surely impact the runtime of the solution.

Unit Conversion

Field Conversion S.I.

1 psi = 6.894757 Pa
1 bbl = 0.1589873 m3

1 cf = 0.028316846592 m3

1 cp =0.001 Pa.s
°API = +141.5/(131.5 )API g/

cm3

°F ° = °C ( F 32)· 5
9

°C

°R = °K R 5
9

K

Fig. 14. Solution improvement using a tabu search for case 3 (lumping of EOS-
34 into EOS-6).

Fig. 15. Exploration of the variable space by the tabu search algorithm
(lumping of EOS-34 into EOS-6).

Fig. 16. Example of local minima when lumping EOS-34 into EOS-6 (after
Alavian et al. (2014)).

Fig. 17. Example of local attraction basin and the tabu search's capability to
continue the exploration.
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Nomenclature

RMS Root mean square error [%]
LT Tabu list
N x( ) Neighborhood of point x in the tabu search
µi Chemical potential of component i in phase π
bk Bit k in a chromosome
di,ref Reference value for PVT data i
di xx, PVT data i calculated with EOSxx
di x, PVT data i calculated with EOSx
fi Fitness of chromosome i
N Quantity of moles
Nc Number of chromosomes
Np Number of parents
Nx Number of components in EOSx
Nxx Number of components in EOSxx
P Pressure [bar or psi]
pi Probability of chromosome i to be selected
R Ideal gas constant
ri Residual relative error for PVT data i [%]
T Temperature [°F or °R]
V Molar volume [m3/kmol]
wi Weight factor for PVT data i
Z Z factor of a mixture
zi Molar fraction of component i [mol-%]
BIP Binary Interaction Parameter
BTX Benzene, toluene, and xylene isomers
CCE Constant Composition Expansion
CVD Constant Volume Depletion
EOS Equation of State
EOSx Lumped EOS model with Nxcomponents
EOSxx Detailed SCN EOS model with Nxx components
FPS Fitness-proportionate selection
GA Genetic Algorithm
GC Gas condensate
HC Hydrocarbon
PVT Pressure, Volume, Temperature
RMS Root mean square
SCN Single carbon number
SUS Stochastic Universal Sampling

Appendix A. PVT Data

Appendix A.1. PVT models

Table A.4 gives the EOS parameters of the original detailed SCN EOS model consisting of 34 components. Table A.5 give the compositions of the 5
fluids used in the PVT experiments.

Appendix A.2. PVT experiments

A total of 1200 PVT measurements were used in this study, The reference point for comparison is the original detailed EOS model (EOS-34). The
weighting factors used in the RMS are given in Table. A.3.

Table A.3
Global weighting factors used in the RMS (Alavian et al., 2014).

Weighting

Fluid property factor
Liquid Volumes 3
Liquid Saturation 3
Liquid Density 2
Gas-Oil Ratio 2
Condensate-Gas Ratio 2
Relative Volume 1
Gas Specific Gravity 1
Gas Density 1
Gas Z-factor 1

(continued on next page)
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Table A.3 (continued)

Weighting

Liquid API 1
Liquid Viscosity 0
Gas Viscosity 0

Figs A.19-A.33 compare the predictions using the different EOS models (EOS-15, EOS-9 and EOS-6, see Fig. 12) for several CCE experiments and
several reservoir fluids (see Table. A.5). Table A.9 compares the separator test predictions for the different EOS models. Fig. 18 gives the conditions
of the separator test performed for each fluid of Table. A.5.

Fig. A.18. Separator test experiment used in this paper.

Table A.4
Peng-Robinson Equation of State EOS-34 (Alavian et al., 2014). Only +C /C1 7 and HC/non-HC BIP's are non-zeros.

Components Molecular Critical Critical Acentric Volume Boiling Specific LBC BIP's

Weight Temperature Pressure Factor Shift Point Gravity Z-factor N2 C1 CO2

M Tc (R) pc (psia) ω s Tb (R) γ Zc 1

N2 28.01 227.16 492.84 0.037 −0.1676 139.00 0.2834 0.2918 0.000 0.025 0.000
C1 16.04 343.01 667.03 0.011 −0.1500 200.80 0.1461 0.2862 0.025 0.000 0.105
CO2 44.01 547.42 1069.51 0.225 0.0019 332.80 0.7619 0.2743 0.000 0.105 0.000
C2 30.07 549.58 706.62 0.099 −0.0628 332.00 0.3298 0.2792 0.010 0.000 0.130
C3 44.10 665.69 616.12 0.152 −0.0638 415.70 0.5098 0.2763 0.090 0.000 0.125
IeC4 58.12 734.13 527.94 0.186 −0.0620 470.70 0.5704 0.2820 0.095 0.000 0.120
NeC4 58.12 765.22 550.56 0.200 −0.0539 490.70 0.5906 0.2739 0.095 0.000 0.115
IeC5 72.15 828.70 490.37 0.229 −0.0565 542.10 0.6295 0.2723 0.100 0.000 0.115
NeC5 72.15 845.46 488.78 0.252 −0.0293 556.80 0.6359 0.2684 0.110 0.000 0.115
C6 82.42 924.03 489.98 0.240 −0.0026 606.40 0.7028 0.2702 0.110 0.000 0.115
C7 96.10 990.77 454.06 0.275 0.0137 661.20 0.7370 0.2655 0.110 0.026 0.115
C8 108.94 1043.64 421.23 0.311 0.0279 707.70 0.7583 0.2613 0.110 0.030 0.115
C9 122.09 1093.72 388.43 0.352 0.0506 754.30 0.7750 0.2570 0.110 0.034 0.115
C10 135.01 1138.11 360.17 0.392 0.0716 797.10 0.7884 0.2532 0.110 0.038 0.115
C11 147.85 1178.35 335.50 0.431 0.0912 837.10 0.7997 0.2497 0.110 0.042 0.115
C12 160.59 1215.08 313.89 0.471 0.1093 874.50 0.8094 0.2465 0.110 0.045 0.115
C13 173.24 1248.80 294.88 0.506 0.1261 909.70 0.8180 0.2434 0.110 0.048 0.115
C14 185.78 1279.91 278.07 0.542 0.1417 942.80 0.8257 0.2404 0.110 0.051 0.115
C15 198.22 1308.75 263.14 0.578 0.1560 974.10 0.8327 0.2375 0.110 0.054 0.115
C16 210.55 1335.60 249.83 0.614 0.1692 1003.60 0.8391 0.2347 0.110 0.056 0.115
C17 222.77 1360.66 237.91 0.648 0.1813 1031.60 0.8450 0.2320 0.110 0.059 0.115
C18 234.88 1384.16 227.20 0.682 0.1924 1058.10 0.8504 0.2294 0.110 0.061 0.115
C19 246.87 1406.24 217.53 0.715 0.2025 1083.20 0.8555 0.2268 0.110 0.063 0.115
C20 258.75 1427.05 208.78 0.747 0.2118 1107.20 0.8602 0.2243 0.110 0.065 0.115
C21 270.52 1446.72 200.83 0.778 0.2203 1130.00 0.8647 0.2218 0.110 0.067 0.115
C22 282.18 1465.35 193.58 0.809 0.2281 1151.70 0.8688 0.2195 0.110 0.068 0.115
C23 293.73 1483.03 186.96 0.839 0.2352 1172.50 0.8728 0.2171 0.110 0.070 0.115
C24 305.17 1499.86 180.89 0.868 0.2417 1192.30 0.8766 0.2149 0.110 0.071 0.115
C25 316.50 1515.89 175.31 0.897 0.2476 1211.30 0.8801 0.2127 0.110 0.073 0.115
C26 327.73 1531.20 170.17 0.925 0.2529 1229.50 0.8835 0.2105 0.110 0.074 0.115
C27 338.86 1545.84 165.41 0.953 0.2578 1247.00 0.8868 0.2084 0.110 0.075 0.115
C28 349.89 1559.87 161.01 0.979 0.2623 1263.70 0.8899 0.2064 0.110 0.076 0.115
C29 360.82 1573.32 156.92 1.006 0.2663 1279.90 0.8929 0.2044 0.110 0.077 0.115
C30+ 496.34 1711.84 121.96 1.298 0.2940 1446.50 0.9235 0.1831 0.110 0.087 0.115
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Table A.6
Peng-Robinson Equation of State EOS-15. Only +C /C1 7 and HC/non-HC BIP's are non-zeros.

Components Molecular Critical Critical Acentric Volume Boiling Specific LBC BIP's

Weight Temperature Pressure Factor Shift Point Gravity Z-factor N2 C1 CO2

M Tc (R) pc (psia) ω s Tb (R) γ Zc

CO2 44.01 547.42 1069.51 0.225 0.0019 332.79 0.7619 0.2743 0.000 0.105 0.000
N2 28.01 227.16 492.84 0.037 −0.1676 139.04 0.2834 0.2918 0.000 0.025 0.000
C1 16.04 343.01 667.03 0.011 −0.1500 200.80 0.1461 0.2862 0.025 0.000 0.105
C2 30.07 549.58 706.62 0.099 −0.0628 331.98 0.3298 0.2792 0.010 0.000 0.130
C3 44.10 665.69 616.12 0.152 −0.0638 415.68 0.5098 0.2763 0.090 0.000 0.125
IeC4 58.12 734.13 527.94 0.186 −0.0620 470.69 0.5704 0.2820 0.095 0.000 0.120
NeC4 58.12 765.22 550.56 0.200 −0.0539 490.74 0.5906 0.2739 0.095 0.000 0.115
IeC5 72.15 828.70 490.37 0.229 −0.0565 542.09 0.6295 0.2723 0.100 0.000 0.115
NeC5 72.15 845.46 488.78 0.252 −0.0293 556.81 0.6359 0.2684 0.110 0.000 0.115
C6 82.42 924.03 489.98 0.240 −0.0026 606.37 0.7028 0.2702 0.110 0.000 0.115
C7-10 114.12 1063.29 405.39 0.329 0.0418 726.73 0.7647 0.2591 0.110 0.032 0.115
C11-15 170.29 1240.47 298.46 0.498 0.1240 901.50 0.8161 0.2437 0.110 0.048 0.115
C16-21 236.73 1387.28 225.46 0.687 0.1946 1061.89 0.8513 0.2286 0.110 0.061 0.115
C22-29 315.53 1514.31 175.79 0.895 0.2470 1209.52 0.8800 0.2125 0.110 0.073 0.115
C30+ 496.34 1711.84 121.96 1.298 0.2940 1446.49 0.9235 0.1831 0.110 0.087 0.115

Table A.7
Peng-Robinson Equation of State EOS-9. Only the non-zero BIP's are shown in the table.

Components Molecular Critical Critical Acentric Volume Boiling Specific LBC BIP's

Weight Temperature Pressure Factor Shift Point Gravity Z-factor N2 C1 CO2

M Tc (R) pc (psia) ω s Tb (R) γ Zc

CO2 44.01 547.42 1069.51 0.225 0.0019 332.79 0.762 0.2743 0.000 0.105 0.000
N2 28.01 227.16 492.84 0.037 −0.1676 139.04 0.283 0.2918 0.000 0.025 0.000
C1 16.04 343.01 667.03 0.011 −0.1500 200.80 0.146 0.2862 0.025 0.000 0.105
C2-3 35.89 599.88 664.14 0.122 −0.0633 367.80 0.429 0.2778 0.049 0.000 0.128
C4-7 74.32 864.00 498.58 0.233 −0.0214 564.99 0.662 0.2704 0.105 0.007 0.115
C8-10 121.00 1089.20 390.22 0.349 0.0501 750.41 0.774 0.2572 0.110 0.034 0.115
C11-15 170.29 1240.47 298.46 0.498 0.1240 901.50 0.816 0.2437 0.110 0.048 0.115
C16-25 253.36 1416.97 212.36 0.733 0.2088 1096.11 0.858 0.2245 0.110 0.064 0.115
C26-30+ 463.58 1681.89 128.77 1.230 0.2887 1410.15 0.918 0.1869 0.110 0.085 0.115

Table A.8
Peng-Robinson Equation of State EOS-6. Only the non-zero BIP's are shown in the table.

Components Molecular Critical Critical Acentric Volume Boiling Specific LBC BIP's

Weight Temperature Pressure Factor Shift Point Gravity Z-factor N2eC1 CO2eC3

M Tc (R) pc (psia) ω s Tb (R) γ Zc

N2eC1 16.07 342.750 666.664 0.011 −0.1500 200.67 0.146 0.2862 0.0000 −0.0001
CO2eC3 35.95 598.820 665.219 0.122 −0.0630 367.11 0.430 0.2778 −0.0001 0.0000
C4-7 74.32 864.000 498.579 0.233 −0.0214 564.99 0.662 0.2704 0.0069 −0.0001
C8-13 137.09 1143.170 353.829 0.400 0.0792 803.34 0.790 0.2519 0.0392 −0.0001
C14-23 229.29 1372.390 231.419 0.668 0.1893 1045.61 0.848 0.2295 0.0603 −0.0001
C24 + 444.01 1662.890 133.316 1.189 0.2848 1387.16 0.914 0.1892 0.0838 −0.0001
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Fig. A.19. Predictions of liquid saturation for a lean gas condensate. CCE performed at 200 F.

Fig. A.20. Predictions of liquid and gas density for a lean gas condensate. CCE performed at 200 F.

Fig. A.21. Predictions of liquid and gas viscosity for a lean gas condensate. CCE performed at 200 F.
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Fig. A.22. Predictions of liquid saturation for a richer gas condensate. CCE performed at 200 F.

Fig. A.23. Predictions of liquid and gas density for a richer gas condensate. CCE performed at 200 F.

Fig. A.24. Predictions of liquid and gas viscosity for a richer gas condensate. CCE performed at 200 F.
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Fig. A.25. Predictions of liquid saturation for a near-critical oil. CCE performed at 200 F.

Fig. A.26. Predictions of liquid and gas density for a near-critical oil. CCE performed at 200 F.

Fig. A.27. Predictions of liquid and gas viscosity for a near-critical oil. CCE performed at 200 F.
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Fig. A.28. Predictions of liquid saturation for a more volatile oil. CCE performed at 200 F.

Fig. A.29. Predictions of liquid and gas density for a more volatile oil. CCE performed at 200 F.

Fig. A.30. Predictions of liquid and gas viscosity for a more volatile oil. CCE performed at 200 F.
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Fig. A.31. Predictions of liquid saturation for a less volatile oil. CCE performed at 200 F.

Fig. A.32. Predictions of liquid and gas density for a less volatile oil. CCE performed at 200 F.

Fig. A.33. Predictions of liquid and gas viscosity for a less volatile oil. CCE performed at 200 F.
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Table A.9
Separator test results.

Fluid Lean Rich Near More Less

Critical Volatile Volatile

Properties GC GC Oil Oil Oil

EOS34 GOR [scf/STB] – – 5175.0 2282.8 985.6
EOS-15 – – −0.8% −0.4% −0.2%
EOS-9 – – −3.1% −2.4% −1.4%
EOS-6 – – −3.1% −2.4% −1.4%
EOS34 OGR [STB/MMscf] 50.6 98.4 – – –
EOS-15 3.5% 1.7% – – –
EOS-9 1.7% 2.8% – – –
EOS-6 3.3% 3.3% – – –
EOS34 API [°API] 56.1 55.1 52.7 48.0 41.7
EOS-15 −0.6% −0.6% −0.4% −0.2% 0.0%
EOS-9 2.0% 2.2% 2.0% 1.4% 0.9%
EOS-6 0.7% 1.2% 1.2% 0.9% 0.8%

Appendix B. Proposed GA Operators

Algorithm 1: Proposed crossover operation.
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Algorithm 2:Proposed mutation operation.
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