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Abstract
We extend the numerically-assisted RTA workflow proposed by Bowie and Ewert (2020) to (a) all fluid
systems and (b) finite conductivity fractures. The simple, fully-penetrating planar fracture model proposed
is a useful numerical symmetry element model that provides the basis for the work presented in this paper.
Results are given for simulated and field data.

The linear flow parameter (LFP) is modified to include porosity (LFPꞌ=LFP√φ). The original (surface)
oil in place (OOIP) is generalized to represent both reservoir oil and reservoir gas condensate systems, using
a consistent initial total formation volume factor definition (Bti) representing the ratio of a reservoir HCPV
containing surface oil in a reservoir oil phase, a reservoir gas phase, or both phases.

With known (a) well geometry, (b) fluid initialization (PVT and water saturation), (c) relative
permeability relations, and (d) bottomhole pressure (BHP) time variation (above and below saturation
pressure), three fundamental relationships exist in terms of LFPꞌ and OOIP. Numerical reservoir simulation
is used to define these relationships, providing the foundation for numerical RTA, namely that wells: (1)
with the same value of LFPꞌ, the gas, oil and water surface rates will be identical during infinite-acting (IA)
behavior; (2) with the same ratio LFPꞌ/OOIP, producing GOR and water cut behavior will be identical for all
times, IA and boundary dominated (BD); and (3) with the same values of LFPꞌ and OOIP, rate performance
of gas, oil, and water be identical for all times, IA and BD. These observations lead to an efficient, semi-
automated process to perform rigorous RTA, assisted by a symmetry element numerical model.

The numerical RTA workflow proposed by Bowie and Ewert solves the inherent problems associated
with complex superposition and multiphase flow effects involving time and spatial changes in pressure,
compositions and PVT properties, saturations, and complex phase mobilities.

The numerical RTA workflow decouples multiphase flow data (PVT, initial saturations and relative
permeabilities) from well geometry and petrophysical properties (L, xf, h, nf, φ, k), providing a rigorous yet
efficient and semi-automated approach to define production performance for many wells.

Contributions include a technical framework to perform numerical RTA for unconventional wells,
irrespective of fluid type. A suite of key diagnostic plots associated with the workflow is provided,
with synthetic and field examples used to illustrate the application of numerical simulation to perform
rigorous RTA. Semi-analytical models, time, and spatial superposition (convolution), pseudopressure and
pseudotime transforms are not required.
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Introduction  

RTA methods to correct for superposition and multiphase flow effects have been studied extensively in 

the past. Analytically1 correcting for the combined effect of both superposition and multiphase flow at the 

same time (“multiphase superposition”) is not possible, as one needs to know saturations and PVT 

properties as a function of space for all times. Multiple cycles of hysteresis in a multiphase, complex PVT 

and relative permeability system, are impossible to handle analytically2 (Jones 1985). The only way to get 

that information is a complete numerical solution with the actual bottomhole pressure history.  

 

Bowie and Ewert (2020) introduced the concept of numerically assisted RTA for oil reservoirs to handle 

the inherent problems associated with classical industry-standard RTA, namely the proper, combined 

handling of: 

• Rigorous superposition, describing hysteresis effects caused by widely changing pressures and rates, 

especially important during the early, infinite acting period. 

• Multiphase flow effects, exhibiting large and discountinous changes in compressibility, viscosity, 

formation volume factors and relative saturations with pressure. 

In this paper, we will look closer at the workflow proposed by Bowie and Ewert (2020), and   

• generalize the workflow for all fluid systems3, not only oil reservoirs.  

• incorporate the use of finite conductivity fractures (low Fcd) consistently into the workflow. 

• include porosity in the definition of a modified linear flow parameter, LFP’, to allow for changes in 

porosity in the workflow. 

• introduce the concept of “cumulative LFP’s” to reduce noise. 

• validate the workflow with both simulated data and real field data. 

Underlying assumptions – 1D Reservoir Model 

The theory presented in this paper assumes a so-called "symmetry element" model, in which the 

underlying numerical model is representing one-quarter of a fracture. This is highlighted by the red-lined 

box in Fig. 1. The model is “1 dimensional”, as there are no flow contributions beyond the fractips (𝑥𝑓 = 

𝑥𝑒) or beyond the frac height (ℎ𝑓 = ℎ). Hence, there is only one no-flow boundary, resulting in two 

dominant flow regimes over time; (1) infinite acting (IA) linear flow, followed by (2) boundary dominated 

(BD) flow. In this study, only one permeability zone assumed is assumed, i.e., no enhanced-permeability 

fracture region near the wellbore and hydraulic fracture. Still, most of the underlying concepts presented 

in this paper are also relevant for more complex reservoir geometries (layered systems, dual permeability 

regions, inclusion of non-stimulated matrix). 

 
1 In this context, “analytical” is referring to linearization of partial differential equations.  
2 To do that, one would need to know the "reservoir integral pseudopressure", which means knowing the entire numerical solution 

everywhere. This is the reason, for instance, that Clarkson et al (2019) leverages a calibrated simulation model as an input to a proposed 

multiphase correction methodology, as it is required to accurately estimate average pressures and saturations in the three flow regions they 

are integrating over. 
3 Except for dry gas reservoirs  
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Fig. 1— Wellbox model assumed in this paper. 

RTA Fundamentals  

Traditional RTA for tight unconventional resources involves plotting rate normalized pressure (RNP) 

versus square root of time, [(pi-pwf)/qo vs. √𝑡], commonly referred to as the “square-root-of-time plot”. 

For single-phase oil flow at constant bottomhole pressure, the square-root-of-time plot exhibits a straight 

line with constant slope and zero intercept during IA, linear flow, as shown in Fig. 2. Deviation from the 

straight line indicates the end of infinite acting, linear flow. Obtaining the correct time to end of linear 

flow (telf) is key to solving for meaningful reservoir parameters such as permeability (k) and stimulated 

surface area (A). 

 

 
Fig. 2 — (a) Bottomhole pressure higher than the bubblepoint (ideal, single-phase oil flow).  

(b) The “square root of time” plot exhibits a constant slope during infinite acting, linear flow. 

 

As described by Bowie and Ewert (2020), deviations from the ideal, straight-line behavior during IA, 

linear flow are caused by superposition effects. This is even observed for flow under single-phase 

conditions, as shown in Fig. 3. Significantly changing BHPs, as exemplified here with step changes, 

introduce multiple straight lines on the square root of time plot. Such BHP variations often cause 

significant departure from the theoretical linear trend of the square-root-of-time plot, when working with 

real data.  
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Fig. 3—(a) Superposition effects (i.e. changing rates and pressures) are introduced with a radically changing bottomhole pressure profile with 
time. (b) The “square root of time” plot exhibits several slopes when exposed to superposition effects, even when being in transient. 

 

In addition to the superposition effects, multiphase flow effects are introduced as the bottomhole pressure 

drops below the saturation pressure. Fig. 4 shows the square root of time plot for the same reservoir 

simulation model controlled on two different drawdown profiles, dropping below the bubblepoint at two 

different times. It is important to emphasize that the simulation model is in infinite acting, linear flow 

throughout the entire presented history. However, deviation from straight line behavior is observed as the 

bottomhole pressure drops below the bubblepoint pressure and multiphase flow effects become apparent. 

This combined effect of superposition and multiphase flow causes a deviation from straight line behavior 

that is not caused by boundary effects but could be misinterpreted as such. Incorrectly picking a too small 

time to end of linear flow would lead to a short frac half-length and high permeability, and the erroneous 

conclusion of proceeding with tight well spacing. 

 

 
Fig. 4— (a) Bottomhole pressure drops below saturation pressure after about 290 days, causing a deviation from straight line behavior. (b) 

Bottomhole pressure drops below saturation pressure after about 140 days, causing a deviation from straight line behavior. 
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Numerically Assisted RTA: Key Geometric Variables 
To understand the numerically assisted RTA workflow outlined in this paper, the theoretical background 

must be presented and validated. To reduce the number of geometric variables, the modified linear flow 

parameter (LFP’)4 and original oil in place (OOIP) are defined as follows: 

  

𝐿𝐹𝑃′ = 𝐿𝐹𝑃√𝜑 = 4𝑛𝑓𝑥𝑓ℎ√𝑘√𝜑 

 

(1) 

 
𝑂𝑂𝐼𝑃 =

2𝑥𝑓𝐿ℎ𝜑(1 − 𝑆𝑤𝑖)

𝐵𝑡𝑖
 (2) 

The introduction of initial total formation volume factor (𝐵𝑡𝑖) generalizes the workflow proposed by 

Bowie & Ewert (2020) to all fluid types, for both initially undersaturated and (two-phase) saturated 

conditions5. 𝐵𝑡𝑖 is defined as 

 
𝐵𝑡𝑖 =

𝑆𝑜𝑖 + 𝑆𝑔𝑖

𝑆𝑜𝑖

𝐵𝑜𝑖
+

𝑆𝑔𝑖

𝐵𝑔𝑑𝑖/𝑟𝑠𝑖

 (3) 

 

which for an undersaturated oil reservoir (𝑆𝑔𝑖= 0) will simplify to 𝐵𝑜 and for an undersaturated gas 

reservoir (𝑆𝑜𝑖= 0) will simplify to 𝐵𝑔𝑑/𝑟𝑠. For a two-phase saturated case, the 𝐵𝑡𝑖 will represent a saturation 

weighted oil FVF6. As mentioned earlier, 𝐵𝑡𝑖 represents the ratio of a reservoir HCPV containing surface 

oil in a reservoir oil phase, a reservoir gas phase, or both phases. 

 

Numerically Assisted RTA: Relationships between LFP’, OOIP and Well Performance  
For a given fluid initialization (PVT and Swi), relative permeability curves, and bottomhole-pressure 

profile versus time, three fundamental relationships exist between LFP’, OOIP, and well performance7.  

1. Wells with the same LFP’ yield the same well performance during infinite acting, linear flow. If the 

OOIP is different, time to end of linear flow is different, and the well performance diverges as the well 

enters transitional (to-BD) flow. This relationship is exemplified in Fig. 5. 

2. Wells with the same LFP’/OOIP ratio yield the same producing GOR and water cuts for all times 

(relative rates), regardless of the actual value of LFP and OOIP. This fundamental relationship is 

exemplified in Fig. 6. 

3. Wells with the same LFP’ and OOIP yield the same well performance for all times and all flow 

regimes. In other words, if LFP’ and OOIP are the same for two wells, the well performance is identical 

(rates, cumulatives, GOR, water cuts), independent of time and flow regime (IA or BD). This 

fundamental relationship is exemplified in Fig. 7. 

These relationships provide the foundation for numerical RTA, and lead to an efficient, semi-automated 

process to perform rigorous RTA, assisted by a symmetry element numerical model.  

 

 

 

 

 

 
4 Note that we are strictly differentiating between LFP’ and LFP in this paper.  
5 Except for dry gases. There is a special section on dry gases later in this paper. 
6 A “cheat sheet” with all the relevant equations are provided in Appendix A. 
7 Remember that the well geometry assumed here is the same as outlined in Fig. 1. 
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Same LFP’, same Infinite Acting (IA) Performance  

 
Fig. 5— Example of three different cases with the same LFP’ = LFP√𝜑, but different OOIP. Note how the performance is identical during the infinite, 

acting linear flow period and diverges when entering boundary dominated flow. 
 

Same LFP’ and different OOIP, same relative rates (GOR and water cut) 

 

 
Fig. 6—. Example of three different cases with the same LFP’/OOIP ratio. Note that the relative rates are identical (here exemplified by GOR) for both 

infinite acting and boundary dominated flow. Also note that the performance differs by a constant multiplier. 
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Same LFP’ and OOIP, same performance  

 
Fig. 7— Example of three cases with the same LFP’ and OOIP. Note thathe well performance is identical during both infinite acting and boundary 

dominated flow. 

 
Numerically Assisted RTA: Workflow 
For completeness, the workflow proposed by Bowie and Ewert (2020) is restated, with a few minor 

modifications8,  

1. Create a numerical symmetry element model (the “template model”) that is large enough to behave 

infinite acting (=large OOIP) for the entirety of the historical time of the well being analyzed. In 

practice, this means to create a single fracture, numerical model with a large (“infinite”) distance to 

the closest boundary. Assign a relevant fluid initialization (PVT and 𝑆𝑤𝑖) and relative permeability 

relations.  

2. Run this “infinite acting model” controlled by (a) the well’s actual measured bottomhole pressure 

[𝑝𝑤𝑓(t)], and (b) zero rate during shut-ins. 

3. Calculate the ratio between the actual measured oil rates and infinite acting model oil rates: 𝑟 =

𝑞𝑜,𝑎𝑐𝑡𝑢𝑎𝑙/𝑞𝑜,𝐼𝐴. Alternatively, one can use the cumulative to reduce noise: 𝑟 = 𝑄𝑜,𝑎𝑐𝑡𝑢𝑎𝑙/𝑄𝑜,𝐼𝐴. 

4. Calculate the daily LFP' by multiplying the daily ratio r (Step 3) with the known LFP' of the infinite 

acting, single fracture model (Step 1).  

a. a horizontal flat line indicates infinite acting, linear flow. 

b. deviation below this line represents transitional flow or boundary dominated flow. 

c. the magnitude of the horizontal trend indicates the LFP'. 

5. Pick a “Representative LFP'” based on the early time “LFP'” plot. Remember that a flat, horizontal 

line is expected during infinite acting behavior. 

 
8 Main modifications are i) generalize LFP definition to include porosity, LFP’ = LFP√𝜑, ii) emphasize that the workflow is 

valid for a given fluid initialization (PVT and Swi) and relative permeability, iii) introduce the concept of “cumulative LFP”, 

calculated by using the ratio of actual and model cumulatives and iv) specify well-control during shut-in periods. 
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6. Repeat steps 1-2 for multiple, smaller OOIP volumes (reduce distance to closest boundary in the 

"template model"). This results in several “type curves” with each its own LFP'/OOIP ratio. 

7. Multiply each LFP'/OOIP ratio simulated in Step 6 by the “Representative LFP'” picked in Step 5. 

8. Pick the OOIP stem that best matches the actual production data. 

After picking an LFP’ and OOIP for a well, continue the exercise to resolve key reservoir parameters like 

permeability (𝑘) and fracture half length (𝑥𝑓). This is done by assuming a well lateral length (𝐿), number 

of fractures (𝑛𝑓), reservoir height (ℎ) and porosity (φ). Reorder Eqs. 1-2, as follows: 

  

𝑘 = [ 
(𝐿𝐹𝑃√𝜑/𝑂𝑂𝐼𝑃)(1 − 𝑆𝑤𝑖)√𝜑𝐿

2𝐵𝑡𝑛𝑓
]

2 

 

 
 

(4) 

 
𝑥𝑓 =

𝐿𝐹𝑃

4𝑛𝑓ℎ√𝑘
 

 

(5) 

These resolved parameters can be used directly into a numerical reservoir simulator, and as the workflow 

is already leveraging a numerical model, a full consistency between the RTA and numerical reservoir 

simulation model is guaranteed. In other words, if the numerical RTA provides good results, then the first 

run of the numerical reservoir simulator should yield a very history match. From a high-level perspective, 

the numerical RTA workflow is illustrated in Fig. 8. 

 

 
Fig. 8— The numerical RTA workflow. 

One might argue that the uncertainty in some of the input parameters to this approach is too large, 

especially the number of fractures and fracture height. In this case, the LFP’ and OOIP parameters could 

still be used as is (“composite parameters”), which yet again can be tied to different completion practices, 

well spacing decisions and economics. In this sense, LFP’ and OOIP represent the parameters that can be 

uniquely derived from the production data, with the physical parameters in LFP’ and OOIP being non-

unique.    
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Numerically Assisted RTA: Synthetic Data 
To verify the workflow, a synthetic oil well case is analyzed. The associated well and reservoir parameters 

are summarized in Table 1, resulting in an LFP’ ~ 100,000 ft2md1/2 and OOIP ~ 3360 MSTB.  

 

Table 1— Well and Reservoir Parameters. 

 
 

 
Fig. 9 — (a) control model on bottomhole pressure (b) calculate LFP’ (c) overlay type curves (d) pick closest type curve. 

Numerical RTA workflow. The well is controlled on a typical “shale” bottomhole pressure profile as 

illustrated in Fig. 9a, i.e., significantly declining bottomhole pressures until some constant value. First, 

the daily LFP’ values are calculated as described in the previous section (step 1-4) and presented in Fig. 

9b. This is the key diagnostic plot in the workflow. It is seen that the early LFP’ values are flat around 

100,000 ft2md1/2 (step 5). Secondly, the different OOIP type curves are overlaid onto the plot (step 6-7) as 

observed in Fig. 9c. Lastly, the OOIP stem that is closest to the observed data is picked (step 8), which is 

around 3360 days MSTB, as highlighted in Fig. 9d. With the LFP’ and OOIP values selected, the values 

for 𝐿, ℎ, 𝑛𝑓 and 𝜑 provided in Table 1, Eqs. 4-5 can be used to back-calculate 𝑘 ~ 200 nd and 𝑥𝑓 ~ 400 ft.  

 

Cumulative LFP’. Bowie and Ewert (2020) originally proposed to calculate the daily LFP’ (step 3) by 

using the ratio of daily rates (𝑞𝑎𝑐𝑡𝑢𝑎𝑙 / 𝑞𝑚𝑜𝑑𝑒𝑙), resulting in the instantaneous LFP’. Alternatively, one can 

use the ratio of cumulatives produced until a given day (𝑄𝑎𝑐𝑡𝑢𝑎𝑙 / 𝑄𝑚𝑜𝑑𝑒𝑙) to reduce noisy data, resulting 

in the cumulative LFP’. For the abovementioned example, the cumulative LFP’ is plotted over time in 

Fig. 10, and as observed the best-fit LFP’ and OOIP are the same as the ones indicated from the 

instantaneous LFP’. The usefulness of this plot will be further emphasized when working with real data. 

pRi 8000 psia xf, xe 400 ft km 200 nd Sorg, Swc, Sorw 20 %

TR 200 F hf, h 200 ft φm 5 % Sgc 5 %

Rsi 1000 scf/STB Lw 5000 ft FCD 1000 - krocw, krwro, krgro 1 -

Bo 1.472 RB/STB Nf 100 # Swi 30 % nw, now, nog, ng 2 -

Pick early time

LFP’ ~ 100,000 ft2md1/2

Overlay type curves

a b

dc

Pick closest type curve: 

OOIP = 3360 MSTB

Control model on 

bottomhole pressure
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An alternative to reduce noise when working with real field data is to plot a moving average instantaneous 

LFP. 

 
Fig. 10—Cumulative LFP’ versus time for different OOIP numbers. 

Different Diagnostic Plots. Once an LFP’ is selected, the confidence in the corresponding OOIP value 

can be increased by analyzing several diagnostic plots at the same time, in addition to the LFP’ plot itself. 

All the diagnostic plots should line up and indicate the same LFP’ and OOIP. Some of the most useful 

plots are provided in Fig. 11.  

 

For instance, if a certain LFP’ and OOIP set provide a good match on the cumulative oil and gas diagnostic 

plots (Fig. 11a-b), it will guarantee a good history match, as long as the numerical RTA output is used 

consistently9 in the following reservoir simulation exercise.  

 

In addition, as outlined in detail by Jones (2016), different flow regimes can significantly impact GOR 

performance. For tight unconventional wells, exhibiting infinite acting flow, the producing GOR is a 

strong function of 𝑝𝑤𝑓, while for wells exhibiting boundary dominated flow, the producing GOR is a 

strong function of both 𝑝𝑤𝑓 and 𝑝𝑎𝑣𝑔. Hence, it can be useful to look at the actual GOR and compare it to 

the predicted GOR exhibited by the different OOIP type curves (Fig. 11c). Similar analysis can be 

performed on the water cut performance (Fig. 11d). This is somewhat more challenging to use in practice 

with real data, as water cuts tend to be less impacted by flow regimes compared to for example GOR. That 

said, both the GOR and water cut examples provided in Fig. 11c-d further emphasize the fundamental, 

and important relationship between LFP’ and OOIP, i.e. two wells with the same ratio LFPꞌ/OOIP, GOR 

and water cut behavior will be identical for all times, irrespective of flow regime (IA or BD). 

 
9 LFP’ and OOIP used as a basis for resolving parameters such as 𝑥𝑓 and 𝑘. 
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Fig. 11— (a) cumulative oil, (b) cumulative gas, (c) producing instantaneous GOR and (d) water cut. 

Square Root of Time Plot. A common question that arises in this context, is how the combined effect of 

superposition and multiphase flow impacts the square root of time plot. For this example, the square root of time 

plot for all the evaluated OOIPs are provided in Fig 12. One can see that the classic diagnostic plot, even in this 

simple multiphase flow example, behaves highly non-linear, even during infinite acting flow.  

 
Fig 12— The square root of time plot for different the OOIP analyzed in this example. 
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Numerically Assisted RTA: Field-Data Example 
For a field example, it is helpful to split the workflow into three parts: 

1. Define a relevant fluid initialization and relative permeability. 

2. Pick a representative LFP’ and OOIP.  

3. Resolve parameters for history matching (𝑥𝑓 and 𝑘). 

These three steps manifest one of the key benefits of the proposed workflow, i.e., the decoupling of 

multiphase flow related data (PVT, initial saturations and relative permeabilities) from well geometry and 

petrophysical properties (𝐿, 𝑥𝑓, ℎ, 𝑛𝑓, 𝜑, 𝑘). 

 

1. Fluid initialization, relative permeability 

When applying the numerical RTA workflow on field data, it is important to consider the uncertainty in 

the input and assumptions going into the analysis. 

a) A key input is the actual bottomhole (sandface) pressures versus time. If these pressures are measured 

and properly converted from gauge depth to sandface (if relevant), the uncertainty in this input is low. 

However, if these pressures are calculated from readily available surface data (surface pressures, 

production rates and well configuration), a potential source of uncertainty is introduced.  

b) The method assumes a reservoir representative fluid initialization, which includes correct initial 

conditions (𝑝𝑅𝑖 | 𝑇𝑅), PVT properties (𝐵𝑜 , 𝑅𝑠, 𝜇𝑜 | 𝐵𝑔𝑑, 𝑟𝑠, 𝜇𝑔) and saturations (𝑆𝑤𝑖, 𝑆𝑜𝑖, 𝑆𝑔𝑖). To reduce 

uncertainty in the fluid model itself, it is recommended to create PVT tables from an equation of state 

(EOS) model tuned to all the available and measured PVT data in the relevant field/basin (Younus et 

al. 2019).  

c) The methodology assumes a representative relative permeability set. Compared to bottomhole 

pressures and PVT, there is a lack of available relative permeability measurements performed on tight 

unconventional rocks.  Hence, a default set (e.g., Corey) is typically applied and only changed if 

necessary to match historical data. 

One might argue that a weakness of the numerical RTA methodology is that it is dependent on all the 

aforementioned assumptions. However, all reservoir engineering analysis have either explicit, or implicit 

assumptions of both pressure, PVT and relative permeability. Take decline curve analysis (DCA) as the 

simplest example. First, DCA has an inherent assumption of pressure, i.e., it assumes a constant 

bottomhole pressure (𝑝𝑤𝑓 = constant). In addition, when DCA is performed on both the oil and gas phase 

of a well, an implicit producing GOR profile is also assumed. Point being that the producing GOR10, 𝑅𝑝, 

is just a composite result of PVT and relative permeability, as given by Fetkovich (1986) in Eq. 6: 

 

 
𝑅𝑝 = [1 +

𝑘𝑟𝑔𝐵𝑜𝜇𝑜

𝑘𝑟𝑜𝐵𝑔𝑑𝜇𝑔
𝑟𝑠]

−1

[𝑅𝑠 +
𝑘𝑟𝑔𝐵𝑜𝜇𝑜

𝑘𝑟𝑜𝐵𝑔𝑑𝜇𝑔
] (6) 

 

In a practical context, one can ensure that a provided fluid initialization and relative permeability set is 

reasonable by running the “infinite acting” case (step 1) a few times before moving on to the LFP’ and 

OOIP interpretation. This is mainly ensuring that the relative rates (GORs and water cuts) make sense, 

before generating the different type curves (next step). In short, it is important to alter the PVT, initial 

water saturation and relative permeability to ensure that the:  

i. simulated producing GOR from the infinite acting case should be equal to or less than the actual 

GOR. The GOR of the infinite acting model should never be higher than the actual GOR. If a 

 
10Other associated equations are provided in Appendix A: Cheat Sheet for Engineers. 
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mismatch between actual GOR and the simulated IA GOR is observed (higher than the simulated 

GOR), this likely indicates departure from IA linear flow. 

ii. mismatch between the observed water cut and the simulated water cut is as small as possible. Some 

mismatch during the early time (during flowback) is expected. Water cut is not very sensitive to 

flow regime so one should not expect a major change in water cut after reaching end of infinite 

acting behavior. 

 
Fig 13—Example of consistent GOR behavior (equal or lower than observed) and water cut behavior (focus on stabilized water cut) late time. 

After altering PVT, initial water saturation and relative permeability, the relative rates performance versus 

time, for both the historical data and the infinite acting model, could for instance look like the example 

provided in  Fig 13. The associated fluid initialization (PVT and initial saturations) and relative 

permeability is provided in Table 2.  

Table 2—Fluid initialization and relative permeability for real case. 

 
 

2. Select LFP’ and OOIP.  

With a reasonable fluid initialization and relative permeability set, the numerical RTA workflow (steps 1-

8) can be performed. Fig. 14 provides both the cumulative and instantaneous LFP’ plots, both indicating 

that the LFP’ is around 45,000 ft2md1/2. Interestingly, the well is still behaving infinite acting after around 

600 days, hence picking the OOIP = 4491 MSTB would be a conservative (lower limit) case as it is still 

unknown “how large the tank is”.  

 

 
Fig. 14— LFP’ plots for field data, both “cumulative LFP” and “instantaneous LFP”. 

In a perfect world, all the diagnostic plots should line up and indicate the same LFP’ and OOIP. However, 

this is more challenging when working with real data, both subject to noise and uncertainty. For this 

example, the LFP’ and OOIP picked in Fig. 14 provide the different, associated diagnostic plots presented 

in Fig. 15. As observed in Fig. 15a, the cumulative oil plot indicates excellent alignment with the picked 

LFP’ and OOIP. The cumulative gas curve in Fig. 15b is somewhat harder to draw a conclusion from, as 

pRi 5500 psia FCD 8 - nw, now 1.8 -

TR 186 F Swi, Sgi, Sorw 20 % ng 1.5 -

Rsi 1400 scf/STB Swc 10 % nog 4 -

Bo 1.694 RB/STB Sgc 5 % krocw, krwro, krgro 1 -

OOIP = 4491 MSTBLFP’ = 45,000 ft2md1/2 OOIP = 4491 MSTBLFP’ = 45,000 ft2md1/2
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all the type curves collapse to almost the same cumulative gas curve. This is observed for some lower 

GOR oils and is a result of a decrease in well productivity being compensated by the increase in GOR 

from a smaller OOIP case (tank) being more depleted. Hence, using the producing GOR behavior actively, 

as observed in Fig. 15c, more confidence is gained in that the picked OOIP is reasonable. Lastly, as 

observed in Fig. 15d, the water cut plot mismatch for the early time data is significant, which is a period 

mainly dominated by flowback water. Consistently accounting for completion water in the numerical RTA 

workflow is beyond the scope of this paper but is an important item for further investigation. That said, 

one can clearly observe the relative insensitivity to flow regime that water cut performance has compared 

to producing GOR, especially considering the natural noise in the water production data, and 

complications of dealing with both stimulation and formation water. 

 
Fig. 15—. (a) cumulative oil, (b) cumulative gas, (c) producing GOR and (d) producing water cut 

3. Resolve parameters for history matching. 

To use the numerical RTA outputs in a history matching exercise, key parameters such as 𝑘 and 𝑥𝑓 must 

be resolved from Eqs. 4-5 to ensure consistent results. In this example, 𝐿 = 7500 𝑓𝑡, ℎ = 150 𝑓𝑡, 𝑛𝑓 = 100  

and 𝜑 = 5%, will result in a 𝑘 ~ 50 nd and 𝑥𝑓 ~ 472 ft. By importing these parameters into a history matching 

exercise, in which the resolved parameters are used by default, the first run generates the results presented 

in Fig. 16. Note that the model is controlled on bottomhole pressure. Additional, minor adjustments can 

be included to get an even better history match. This is a good example of how the systematic workflow 

outlined in this paper can be used to quickly obtain, rigorous and accurate physics-based results. A 

consistent conversion of the 𝐹𝑐𝑑 parameter used in the numerical RTA workflow, provided in Table 2, to 

what is used in the history matching exercise has been applied.  
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Fig. 16—First run realization using output from history matching exercise.   

 

Finite Conductivity Fractures – Low Dimensionless Fracture Conductivity (Fcd) 

Sometimes an additional pressure drop in the fracture might be required to match historical observed data 

(e.g., GOR performance), and this can be included in the model by assigning a low dimensionless fracture 

conductivity (𝐹𝑐𝑑) to the model at hand. The case presented in the last section, with properties presented 

in Table 2, is an example of that. The lower the 𝐹𝑐𝑑, the higher the pressure drop in the fracture. A finite 

conductivity fracture may be associated with a “linear GOR increase” when the flowing bottomhole 

pressure is below the saturation pressure. 

 

The physical reasons for this additional pressure drop can be many, but numerically a low 𝐹𝑐𝑑 will add 

extra pressure drop between the reservoir and the well. Wells that exhibit this behavior might qualify as 

clean-up candidates. To consistently incorporate a finite conductivity fracture into the numerically assisted 

RTA workflow, one needs to know how the definition of 𝐹𝑐𝑑 changes when other parameters change (e.g., 

permeability, height, number of fractures). 
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Fig. 17—Example of square root of time plot for finite conductive fracture. 

For an ideal model (i.e., single-phase flow, controlled on a constant bottomhole pressure), infinite acting, 

linear flow associated with flow through a finite conductive fracture manifests itself as a positive intercept 

on the square root of time plot, as exemplified in Fig. 17.  

 

For a well with a given slope m, which is a product of LFP' and PVT related parameters, the intercept 

should be the same no matter what combination of parameters that make up m, i.e., irrespective of LFP'. 

Hence, given the relationships presented in Eqs. 7-9, 

 

 𝑝𝑖 − 𝑝𝑤𝑓

𝑞𝑜
=

𝜋

2
𝑚√𝑡 + 𝑏′ 

 

(7) 

 
𝐹𝑐𝑑 =

141.2𝐵𝜇

𝑏′(𝑝𝑖 − 𝑝𝑤𝑓)𝑘 ℎ 𝑛𝑓

 𝛽 

 

(8) 

 
𝛽 =  (1 +

ℎ

𝑥𝑓
(ln (

ℎ

2𝑟𝑤
) −

𝜋

2
)) 

 

(9) 

one can convert 𝐹𝑐𝑑 consistently with  

 

 
𝐹𝑐𝑑,2 = 𝐹𝑐𝑑,1

𝑘1ℎ1𝑛𝑓,1

𝑘2ℎ2𝑛𝑓,2
 
𝛽2

𝛽1
 

 

(10) 

For the field example provided in the last section, the 𝐹𝑐𝑑,1 = 8 used in the numerical RTA workflow is 

converted consistently with Equation 10 to 𝐹𝑐𝑑,2 = 14 used in the history matching realization presented 

in Fig. 16. The conversion must be performed based on the parameters used in the “template model” (step 

1). Relevant for this conversion are the following parameters used in the “template model”: 𝑟𝑤,1 = 1 𝑓𝑡, 

𝑥𝑓,1 = 400 𝑓𝑡, ℎ1 = 200 𝑓𝑡, 𝑁𝑓,1 = 1 and 𝑘1 = 200 𝑛𝑑.  
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Correlating Numerical RTA output to Completion Metrics  

When performing the analysis across wells with very different fluid initializations, it is not fair to only 

correlate the completion data to OOIP. To illustrate, let us assume a reservoir with only water (𝑆𝑤𝑖  =
 100%). No matter how much fracture/surface area the completion created, the OOIP will always be 0. 

Hence, to quantify the completion effectiveness in an isolated manner, irrespective of fluid type, it would 

be fair to correlate this to the contacted pore volume, 𝑉𝑝, which can be easily calculated from OOIP as 

given in Eq. 11. 

  

𝑉𝑝 =
𝐻𝐶𝑃𝑉

1 − 𝑆𝑤𝑖
= (

𝑂𝑂𝐼𝑃

1 − 𝑆𝑤𝑖
)𝐵𝑡𝑖 

 

(11) 

Taking this one step forward, the gross rock volume contacted, 𝑉𝑅, can easily be calculated with Eq. 12, 

to also account for changes in porosity across the wells analyzed. 

  

𝑉𝑅 =
𝑉𝑝

𝜑
 

 

(12) 

Dry Gas Wells 
For dry gas wells, there is no OOIP (𝐵𝑡𝑖 = ∞). Hence, OGIP must be resolved instead of OOIP in the 

numerical RTA workflow. The formula for OGIP is given in Eq. 13.  

  

𝑂𝐺𝐼𝑃 =
2𝑥𝑓𝐿ℎ𝜑(1 − 𝑆𝑤𝑖)

𝐵𝑔𝑑
  

 

 

(13) 

Template Model 
The numerical RTA workflow requires a “base” numerical model to be run systematically, the “template 

model”. In theory, the properties of this “template model” can be arbitrary, i.e., it does not matter what 

permeability, height, number of fractures, porosity and lateral length that is used, as long as one follows 

the general steps of the workflow. In practice, however, there might be numerical reasons for picking a 

certain “template model”, as some pairs of parameters have better performance from a numerical 

perspective (convergence, speed, stability). Finding the optimal template model is beyond the scope of 

this paper, but for the sake of completeness, the template model used in this paper is provided below in 

Table 3. 

Table 3—Default parameters in template model. 

 
 

 

Future Work 
Although the numerical RTA workflow has already shown promise, it is important to remember that the 

methodology is still in its infancy. After using the methodology for a wide range of wells in North-

American unconventionals, the authors have identified the following areas for future work. 

• Investigate whether it is possible to consistently account for completion water in the methodology. In 

most wells, an early time discrepancy between simulated water cut and observed water cut is observed, 

as the frac water is not accounted for in the model. 

• Study how i) well interference, ii) non-ideal well geometries, iii) differential depletion and iv) relative 

permeability assumptions impact the analysis. 

Lw 150 ft xe 400 ft hf 200 ft k 200 nd

nf 1 - xf 400 ft h 200 ft ϕ 0.05 -
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• Assess whether the gridding and the physical parameters assigned to the “template model” can be 

optimized for increased performance from both a numerical (convergence) and computational (speed) 

perspective. 

• Evaluate if shut-in periods, and their associated pressure build-ups, can be used to further constrain 

the results from numerical RTA. This may also enable better calibration of inputs such as  𝐹𝑐𝑑 (low 

𝐹𝑐𝑑 rapid build-up, high 𝐹𝑐𝑑 slow build-up). 

• Try performing the numerical RTA method simultaneously for several wells, rather than for each 

individual well, while minimizing the error of the whole set. Uncertain input parameters such as 

relative permeability could be assigned to the whole group of wells and changed in tandem to minimize 

the overall error.  

• Attempt to include more complex “base models” than the 1D symmetry of element model used in this 

paper. Although the simplicity of the base model has significant advantages, alterations to the base 

model to include other models like a stimulated region around the fracture (enhanced fracture region) 

can be applied. 

Summary  
To summarize, the numerical RTA workflow outlined in this paper: 

• Is readily applied and offers repeatability, such that many wells can be analyzed efficiently. 

• Solves the inherent problems associated with rigorous superposition and multiphase flow effects, 

involving time and spatial changes in pressure, compositions and PVT properties, saturations and 

complex phase mobilities. 

• Decouples multiphase flow data (PVT, initial saturations and relative permeabilities) from well 

geometry and petrophysical properties, providing a rigorous yet rapid and semi-automated approach 

to define production performance for many wells. 

• Does not require semi-analytical models, time and spatial superposition (convolution), pseudo 

pressure and pseudo time transforms. Avoiding a long list of complex analytical equations makes the 

methodology easier to verify in the technical community and makes the methodology more susceptible 

to adoption. 

• Utilizes a full-physics numerical model, which makes it a trivial exercise to export the results from 

RTA analysis into higher order analysis, such as a full-physics reservoir and associated history 

matching. 

• The method has proven to increase the consistency between engineers in a team compared to 

traditional RTA methods (URTeC 2967) 
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Nomenclature 

𝑏 = rate exponent  𝑟𝑠 = 𝑅𝑣 = solution CGR = vaporized oil ratio 

  𝐵𝑔𝑑 = “dry” Gas Formation Volume Factor  𝑟𝑤 = well radius 

𝐵𝑜 = oil formation volume factor  𝑅𝑝 = producing GOR 

𝐵𝑡 = total formation volume factor  𝑅𝑠 = solution GOR 

𝑐𝑔 = gas compressibility 𝑆𝑔𝑖 = initial gas saturation 

𝑐𝑜 = oil compressibility 𝑆𝑜𝑖
 = initial oil saturation 

𝑐𝑟 = rock compressibility 𝑆𝑤𝑖 = initial water saturation 

𝑐𝑡 = total compressibility 𝑡 = time 

𝑐𝑤 = water compressibility 𝑉𝑝 = pore volume 

𝐷𝑖 = nominal decline rate at time zero 𝑉𝑅 = gross rock volume 

𝐹𝑐𝑑 = dimensionless fracture conductivity 𝑥𝑓
 = fracture half length 

ℎ = height 𝑥𝑒
 = reservoir half extent 

ℎ𝑓 = fractured height 𝜇 = viscosity 

𝐿 = well length 𝜑 = porosity 

m = slope on “square-root-of-time” plot 𝜌 = density 

𝑛𝑓 = number of fractures   

𝑁 = cumulative production   

𝑘 = matrix permeability    

𝑘𝑟𝑝 = relative permeability of phase p   

𝑝𝑖 = initial reservoir pressure   

𝑝𝑠𝑎𝑡 = saturation pressure   

𝑝𝑤𝑓 = flowing bottomhole pressure   

𝑞𝑖 = initial flow rate   

𝑞�̅�𝑜 = surface gas rate from res. oil phase    

𝑞�̅�𝑜 = surface oil rate from res. oil phase   

𝑞�̅�𝑔 = surface gas rate from res. gas phase   

𝑞�̅�𝑔 = surface oil rate from res. gas phase   

𝑞𝑜 = reservoir gas rate   

𝑞𝑔 = reservoir gas rate   

𝑞𝑤 = water rate   
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Appendix A: Cheat Sheet for Engineers 
 
Decline Curve Analysis (DCA) 
 

Arps  

𝑞(𝑡) = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)
−

1

𝑏 , ...………………………. (A1) 

 
b value Scenario 

0 Single-phase liquid 

0.1-0.4 Solution gas drive reservoirs 

0.4-0.5 Single phase gas 

0.5-1.0 Layered reservoirs 

>=1 Infinite acting reservoirs 

 

Exponential Decline (b=0)  

 

𝑞 = 𝑞𝑖𝑒
−𝐷𝑖𝑡, ……………………………………... (A2) 

 

𝑁(𝑡) =
𝑞𝑖

𝐷𝑖
(1 − 𝑒−𝐷𝑖𝑡), ………………………....... (A3) 

 

𝑁(∞) =
𝑞𝑖

𝐷𝑖
, ...…………………………………...... (A4) 

 

Hyperbolic (0 < b < 1)  

 

𝑞 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)
−

1

𝑏, ...………………………....... (A5) 

 

𝑁(𝑡) =
𝑞𝑖

(𝑏−1)𝐷𝑖
(1 − 𝑒−𝐷𝑖𝑡) [(1 + 𝑏𝐷𝑖𝑡)

1−
1

𝑏 − 1], . (A6) 

 

𝑁(∞) =
𝑞𝑖

𝐷𝑖
(

1

1−𝑏
), ………………………………... (A7) 

 

Harmonic (b = 1)  

 

𝑞 = 𝑞𝑖(1 + 𝐷𝑖𝑡)
−1, ………………….…………... (A8) 

 

𝑁(𝑡) =
𝑞𝑖

𝐷𝑖
ln(1 + 𝐷𝑖𝑡), ………………………..… (A9) 

 
𝑁(∞) = ∞, …………………………………….. (A10) 

 

Harmonic (b >= 1)  

 

𝑞 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)
−

1

𝑏, …………………………… (A11) 

 

𝑁(𝑡) =
𝑞𝑖

(𝑏−1)𝐷𝑖
(1 − 𝑒−𝐷𝑖𝑡) [(1 + 𝑏𝐷𝑖𝑡)

1−
1

𝑏 − 1], (A12) 

 
𝑁(∞) = ∞, …………………………………….. (A13) 
 

 

 

 

 

 

 

 

 

Numerical RTA 
 

𝐿𝐹𝑃 = 4𝑛𝑓𝑥𝑓ℎ√𝑘, ...………………………...…. (A14) 

 

𝐿𝐹𝑃′ = 𝐿𝐹𝑃√𝜑 = 4𝑛𝑓𝑥𝑓ℎ√𝑘√𝜑 , ...…………. (A15) 

 

𝑂𝑂𝐼𝑃 =
2𝑥𝑓𝐿ℎ𝜑(1−𝑆𝑤𝑖)

𝐵𝑡
 , ...………………………. (A16) 

 

𝐿𝐹𝑃√𝜑/𝑂𝑂𝐼𝑃 =
2𝑛𝑓√𝑘

𝐿√𝜑(1−𝑆𝑤𝑖)
𝐵𝑡  , ...…………….. (A17) 

 

𝑘 = [ 
(𝐿𝐹𝑃√𝜑/𝑂𝑂𝐼𝑃)(1−𝑆𝑤𝑖)√𝜑𝐿

2𝐵𝑡𝑛𝑓
]
2 

 , ...…………..…. (A18) 

 

𝑥𝑓 =
𝐿𝐹𝑃

4𝑛𝑓ℎ√𝑘
 , ...…………………………………. (A19) 

 

𝐵𝑡 =
𝑆𝑜+𝑆𝑔

𝑆𝑜
𝐵𝑜

+
𝑆𝑔

𝐵𝑔𝑑/𝑟𝑠

 , ...………………………………. (A20) 

 

𝑉𝑝 =
𝐻𝐶𝑃𝑉

1−𝑆𝑤𝑖
= (

𝑂𝑂𝐼𝑃

1−𝑆𝑤𝑖
) 𝐵𝑡𝑖 , ...……………….….... (A21) 

 

𝑉𝑡 = 𝑉𝑝  /𝜑 , .…………………………………..... (A22) 

 

𝑂𝐺𝐼𝑃 =
2𝑥𝑓𝐿ℎ𝜑(1−𝑆𝑤𝑖)

𝐵𝑔𝑑
  , ...…………………….… (A23) 

 

Producing GOR & krg/kro  
 

𝑅𝑝 = [1 + 𝛼𝑟𝑠]
−1[𝑅𝑠 + 𝛼] , ...…………………. (A24) 

 

𝛼 =
𝑘𝑟𝑔𝐵𝑜𝜇𝑜

𝑘𝑟𝑜𝐵𝑔𝑑𝜇𝑔
 , ...……………………………..…. (A25) 

 

For 𝑟𝑠 = 0,  

 

𝑅𝑝 =
𝑞𝑤

𝑞�̅�𝑔+𝑞�̅�𝑜
= 𝑅𝑠 +

𝑘𝑟𝑔𝐵𝑜𝜇𝑜

𝑘𝑟𝑜𝐵𝑔𝑑𝜇𝑔
 , ...…………...…. (A26) 

  

Solve for 𝑘𝑟𝑔/𝑘𝑟𝑜 

 
𝑘𝑟𝑔

𝑘𝑟𝑜
=

𝑅𝑝−𝑅𝑠

1−𝑅𝑝𝑟𝑠

𝐵𝑔𝑑𝜇𝑔

𝐵𝑜𝜇𝑜
  , ...…………………..………. (A27) 
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Analytical Rate Transient Analysis 
 

Infinite Conductivity  

 

𝑚 =
19.927𝐵𝑜

ℎ𝑥𝑓√𝑘
√

𝜇𝑜

𝜑𝑐𝑡
=

79.708𝐵𝑜

4ℎ𝑥𝑓√𝑘
√

𝜇𝑜

𝜑𝑐𝑡
 , ...………….. (A28) 

 

𝑚 =
79.708𝐵𝑜

𝐿𝐹𝑃√𝜑
√

𝜇𝑜

𝑐𝑡
=

79.708𝐵𝑜

𝐿𝐹𝑃′
√

𝜇𝑜

𝑐𝑡
  , ...………...…. (A29) 

 

Constant flowing pressure 

 
𝑝𝑖−𝑝𝑤𝑓

𝑞𝑜
=

𝜋

2
𝑚√𝑡 , ...…………………..…………. (A30) 

 

Constant rate solution  

 
𝑝𝑖−𝑝𝑤𝑓

𝑞𝑜
= 𝑚√𝑡 , ...…………………..………..…. (A31) 

 

Finite Conductivity  

 
𝑝𝑖−𝑝𝑤𝑓

𝑞𝑜
=

𝜋

2
𝑚√𝑡 + 𝑏′ , ...………………..………. (A32) 

 

𝐹𝑐𝑑 =
141.2𝐵𝜇

𝑏′(𝑝𝑖−𝑝𝑤𝑓)𝑘 ℎ 𝑛𝑓
 𝛽 , ...………….....………. (A33) 

 

𝛽 =  (1 +
ℎ

𝑥𝑓
(ln (

ℎ

2𝑟𝑤
) −

𝜋

2
)) , ...…………….... (A34) 

 

Changing Fcd when other parameters are changed: 

  

𝐹𝑐𝑑,2 = 𝐹𝑐𝑑,1
𝑘1ℎ1𝑛𝑓,1

𝑘2ℎ2𝑛𝑓,2
 
𝛽2

𝛽1
 , ..........………..………. (A35) 

 

Darcy  
 

𝑣𝑜⃗⃗  ⃗ = −
𝑘𝑘𝑟𝑜

𝜇𝑜
∇(𝑝𝑜 + 𝜌𝑜𝑔ℎ) , ...………………….. (A36) 

 

𝑣𝑔⃗⃗⃗⃗ = −
𝑘𝑘𝑟𝑔

𝜇𝑔
∇(𝑝𝑔 + 𝜌𝑔𝑔ℎ) , ...…………………. (A37) 

 

𝑣𝑤⃗⃗ ⃗⃗  = −
𝑘𝑘𝑟𝑤

𝜇𝑤
∇(𝑝𝑤 + 𝜌𝑤𝑔ℎ) , ...……………..…. (A38) 

 

 

 

 

 

 
Producing Water Cut 
 
For oils (𝑟𝑠 = 0) 

 
1

𝑊𝐶
=

𝑞𝑤+𝑞�̅�𝑜

𝑞𝑤
= 1 +

𝑘𝑟𝑜𝐵𝑤𝜇𝑤

𝑘𝑟𝑤𝐵𝑜𝜇𝑜
 , ...……..………... (A39) 

 
𝑘𝑟𝑤

𝑘𝑟𝑜
= 

𝐵𝑤𝜇𝑤

𝐵𝑜𝜇𝑜
(

𝑊𝐶

1−𝑊𝐶
) , ...……..………..…….…. (A40) 

 

For gas condensates / wet gases (𝑟𝑠 > 0 & 𝑘𝑟𝑜 = 0) 

 
1

𝑊𝐶
=

𝑞𝑤+𝑞�̅�𝑔

𝑞𝑤
= 1 +

𝑘𝑟𝑔𝜇𝑤𝐵𝑤𝑟𝑠

𝑘𝑟𝑤𝜇𝑔𝐵𝑔𝑑
 , ...………………. (A41) 

 
𝑘𝑟𝑤

𝑘𝑟𝑔
= 

𝜇𝑤𝐵𝑤𝑟𝑠

𝜇𝑔𝐵𝑔𝑑
(

𝑊𝐶

1−𝑊𝐶
) , ..........…………..………. (A42) 

 

Other Useful Equations 
 

Total Compressibility  

 

𝑐𝑡 = 𝑐𝑟 + 𝑆𝑜𝑐𝑜 + 𝑆𝑤𝑐𝑤 + 𝑆𝑔𝑐𝑔 , ........………….. (A43) 

 

Isothermal Compressibility  

 

𝑐 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)

𝑇
= 

1

𝜌
(
𝜕𝜌

𝜕𝑝
)

𝑇
=

1

𝐵
(
𝜕𝐵

𝜕𝑝
)

𝑇
 , ........……. (A44) 

 

Superposition (Linear) Time 

 

𝑡𝑛 = (∑
𝑞𝑗−𝑞𝑗−1

𝑞𝑛

𝑛
𝑗=1 √𝑡 − 𝑡𝑗−1)

2

 , ...………….…. (A45) 

 

Material Balance Time  

 

𝑡𝑛 =
𝑄𝑛

𝑞𝑛
 , ...………………………………………. (A46) 

 

Diffusivity Equation (radial coordinates) 

 

∂2p/∂r2+r-1∂p/∂r=η-1∂p/∂t , ...……….……. (A47) 

 

η=k/φμc , ...………………..………..……….. (A48) 
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Appendix B: Providing Physical Significance to DCA Parameters  
DCA parameters, i.e.,  𝑞𝑖, 𝐷𝑖 and 𝑏, represent underlying, physical parameters. To convince ourselves that 

this is the case, a single-phase oil well, producing at a constant bottomhole pressure is analyzed. The well 

is an idealized multi-fractured horizontal well (MFHW), as exemplified in Fig. 1, with negligible 

production beyond the fracture tips. Linear flow is perpendicular to the fractures. For such a model, there 

will first be a period of infinite acting flow (IAF). The duration of this period depends on parameters such 

as permeability and distance to the closest offset fracture. Boundary-dominated flow (BDF) occurs after 

pressure at the no-flow boundary between fractures declines to less than the initial reservoir pressure. For 

such a case, the generalized Arps equation Eq. B1 can be tied to the analytical solutions for both infinite 

acting and boundary dominated flow periods as presented in Eqs. B2-B8.  

𝑞(𝑡) = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)
−

1

𝑏 , ……………………………………………………………………………... (B1) 
 

𝑞𝑖 = {

ℎ𝑥𝑓√𝑘

31.3𝐵𝑜
√

𝜑𝑐𝑡

𝜇𝑜
𝑝𝑖 − 𝑝𝑤𝑓 =  

𝐿𝐹𝑃√𝜑

125.2𝐵𝑜
√

𝑐𝑡

𝜇𝑜
𝑝𝑖 − 𝑝𝑤𝑓 ,   𝑡𝑒𝑙𝑓 < 0

4ℎ𝑥𝑓𝑘

141.2𝐵𝑜

𝑝𝑖−𝑝𝑤𝑓

𝜇𝑜𝜋𝑦𝑒
= 

𝐿𝐹𝑃√𝑘

141.2𝐵𝑜

𝑝𝑖−𝑝𝑤𝑓

𝜇𝑜𝜋𝑦𝑒
,          𝑡𝑒𝑙𝑓 ≥ 0

, ………………………..……....….... (B2) 

 

𝐷𝑖(𝑡) = {
           

1

2
,                    𝑡 < 𝑡𝑒𝑙𝑓

𝜋2

4

0.00633𝑘

𝑦𝑒
2𝜑𝑐𝑡𝜇𝑜

,         𝑡 ≥ 𝑡𝑒𝑙𝑓
 , ……………………………………………… ……….…..… (B3) 

 

𝑏(𝑡) = {
2,   𝑡 < 𝑡𝑒𝑙𝑓
0,   𝑡 ≥ 𝑡𝑒𝑙𝑓

 , ………………………………………………………………………………... (B4) 

 

𝑡𝑒𝑙𝑓 =
𝑦𝑒

2𝜇ϕct

0.159k
 , …………………………………….…………………………………………………. (B5) 

 

𝑄(𝑡) = ∫ 𝑞(𝑡)
∞

0
𝑑𝑡 , …………………………………………………………………………………. (B6) 

 

𝑄(∞) = ∫ 𝑞𝐼𝐴
𝑡𝑒𝑙𝑓

0
𝑑𝑡 + ∫ 𝑞𝐵𝐷𝐹

∞

𝑡𝑒𝑙𝑓
𝑑𝑡 , …………………………………….…………………………. (B7) 

 

𝑄(∞) =  (2𝑞𝑖 [(𝑡𝑒𝑙𝑓 + 1)
1

2 − 1])
𝐼𝐴

+ (
𝑞𝑖

𝐷𝑖
𝑒−𝐷𝑖𝑡𝑒𝑙𝑓)

𝐵𝐷𝐹
 , ……………………………………….….. (B8) 

 

The verification of the results with a numerical simulator is provided in Fig 18, with associated, physical 

parameters provided in Table 4. As observed, all the curves overlay. A question that arises in this context 

is whether the PVT properties should be evaluated at (1) the initial reservoir pressure, (2) the flowing 

bottomhole pressure (constant in this case), or (3) some average pressure. Agarwal (1979) introduces the 

concept of pseudotime to solve this issue in an accurate manner. However, for the purposes of this 

example, evaluating the PVT dependent properties (𝐵𝑜, 𝜇𝑜, 𝑐𝑡) at the midpoint of initial reservoir pressure 

and the flowing bottomhole pressure provides satisfactory results, i.e., 𝑝 = (𝑝𝑖 + 𝑝𝑤𝑓)/2.  From this very 

simple case, the following conclusions can be made: (i) as originally shown by Fetkovich in 1973, the 

Arps parameters (𝑞𝑖, 𝐷𝑖 and 𝑏) represent underlying physical parameters and (ii) 𝑏 and 𝐷𝑖 values vary 

used to describe infinite acting behavior will often vary with time.  
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Fig 18—Comparison of results DCA (with parameters from physical analytical equations) and a full-physics reservoir simulator. 

 

Table 4. Relevant parameters for the results presented in Fig 18. 
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1.0E+02
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O
il
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, 
q

o
(S

T
B

/D
)

Time, t (d)

Analytical DCA, b = 2, Di = 0.5 DCA, b = 0, Di = 0.5 Simulator

µ 0.624 cp 0.000624 Pa s

φ 0.05 0.05

cr 4.000E-06 1/psi 5.80E-10 1/Pa

cw 3.000E-06 1/psi 4.35E-10 1/Pa

co 1.330E-05 1/psi 1.93E-09 1/Pa

ct 1.730E-05 1/psi 2.51E-09 1/Pa

km 2.000E-04 md 1.97E-19 m2

ye 25 ft 7.62 m

pi 7500 psia 51725700 Pa 

pwf 2500 psia 17241900 Pa 

xf 500 ft 152.40 m

hf 150 ft 45.72 m

Bo 1.196 RB/STB 1.196 RB/STB

Field Units SI Units

Analytical Parameters
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To provide physical significance to the DCA parameters b, Di and qi, the analytical solutions for both 

infinite acting linear flow and boundary dominated flow must be written on the form of Arps. To do this, 

the following assumptions are applied: (1) constant bottomhole pressure, (2) single-phase oil flow and (3) 

no volume beyond the frac tip and (4) one homogenous layer. This results in so-called “1D flow”, with 

transition directly from infinite acting linear flow to boundary dominated flow at 𝑡𝑒𝑙𝑓.  

 

Linear Flow. The analytical equation for constant pressure is (Wattenbarger, 1998) 

 

𝑞𝑜 =
ℎ𝑥𝑓√𝑘

31.3𝐵𝑜
√

𝜑𝑐𝑡

𝜇𝑜
(𝑝𝑖 − 𝑝𝑤𝑓)𝑡

−
1

2 , ……………………………………………………….……….……. (B9) 

 

One immediate observation is that q(t=0) in Arps and q(t=0) in the analytical equation yield inconsistent 

results, i.e., 𝑞𝑜,𝐷𝐶𝐴(𝑡 = 0) = 𝑞𝑖, while 𝑞𝑜,𝑅𝑇𝐴(𝑡 = 0) = 0. Substitution, in which 𝑡 = 𝑡0 + 1, where 𝑡0 = 

0, 1, 2, 3, etc., yield,  

 

𝑞𝑜 =
ℎ𝑥𝑓√𝑘

31.3𝐵𝑜
√

𝜑𝑐𝑡

𝜇𝑜
(𝑝𝑖 − 𝑝𝑤𝑓)(1 + 𝑡𝑜)

−
1

2 , …………………………………………………...……... (B10) 

which can be written on the form 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)
−

1

𝑏, where 𝑞𝑖 =
ℎ𝑥𝑓√𝑘

31.3𝐵𝑜
√

𝜑𝑐𝑡

𝜇𝑜
(𝑝𝑖 − 𝑝𝑤𝑓), 𝑏 = 2 and 𝐷𝑖 =

1

2
. 

 

Boundary Dominated Flow. The analytical solution for constant pressure is (Carslaw and Jaeger, 1959; 

Miller, 1962) 

𝑞𝑜 =
4𝑥𝑓ℎ𝑘(𝑝𝑖−𝑝𝑤𝑓)

141.2𝐵𝑜𝜇𝑜𝜋𝑦𝑒
∑ 𝑒

−𝑛2𝜋2

4

0.00633𝑘

𝑦𝑒
2𝜇𝑜𝑐𝑡

 𝑡
∞
𝑛𝑜𝑑𝑑 ≈ 

4𝑥𝑓ℎ𝑘(𝑝𝑖−𝑝𝑤𝑓)

141.2𝐵𝑜𝜇𝑜𝜋𝑦𝑒
𝑒

− 
𝜋2

4

0.00633𝑘

𝑦𝑒
2𝜇𝑜𝑐𝑡

 𝑡
  , ……..……….....………. (B11) 

Which can be rewritten on the form 𝑞 = 𝑞𝑖𝑒
−𝐷𝑖𝑡, where 𝑞𝑖 =

4𝑥𝑓ℎ𝑘(𝑝𝑖−𝑝𝑤𝑓)

141.2𝐵𝑜𝜇𝑜𝜋𝑦𝑒
, 𝑏 = 0 and 𝐷𝑖 =

𝜋2

4

0.00633𝑘

𝑦𝑒
2𝜇𝑜𝑐𝑡

. 

 

Time to end of linear flow. The analytical solution given in Eq. B5 for time to end of linear flow is given 

by Wattenbarger (1998). 

 

Appendix C: Flow Regimes Summary 
 

Infinite acting flow (
𝝏𝒑

𝝏𝒕
 ≠ 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕): is often referred to as transient flow, or sometimes unsteady flow. 

This flow regime ends as the pressure transient reaches one reservoir boundary.  

Transitional flow: This flow regime starts as the pressure transient reaches one reservoir boundary and 

ends when the pressure propagation reaches all reservoir boundaries. 

Boundary dominated flow (
𝝏𝒑

𝝏𝒕
= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕): This flow regime starts as the pressure propagation 

reaches all reservoir boundaries.  

i. Pseudo-steady state (PSS). Occurs when all outer boundaries of the reservoir are no-flow 

boundaries. These boundaries can be both sealing faults and nearby producing wells or fractures. 

During this period, the change in pressure at any place in the reservoir decreases at the same, 

constant rate. The reservoir is said to behave as a “tank”. 

ii. Steady state flow (𝜕𝑝/𝑑𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0). Occurs when a constant pressure outer boundary 

exists (reservoir with aquifer or gas cap expansion support). During this period, the change in 

pressure at any place in the reservoir is zero.  
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