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REPETITION!
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General Information

• 1/2-day course

• Session 1: 8 am – 12 pm Central Time 

• Interactive class

• Ask questions – drive the course emphasis

• In chat

• … or unmute to ask question (mute when not talking☺)

• Will send out all digital material after class 

(class recording, presentations etc.)

• Some content in this slide deck is meant for presentation 

purposes, while some parts are meant for reference.
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Disclaimer

The course is tailored for practitioners, i.e., folks that need PVT properties, or to 

understand fundamental PVT, in their day-to-day work for different reasons 

(reservoir, production, processing, facility, exploitation, completion, geologists, 

petrophysics, managers, sales, marketing).

The course will be of a more pragmatic character, i.e., we will focus on items 

that you can go out an apply immediately with readily available data and 

industry standard tools.

It is not tailored for "PVT experts" → we have a 5-day course for that

(even though they are more than welcome as well ).

Hence, “advanced topics” that

• require a lot of detail (PVT lab QC, PVT lab reports, EOS development)

• or lack industry consensus (e.g. “nano pore” PVT)

will not be prioritized



6Copyright © Whitson AS

Digital 
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Digital Handouts

•All slides

•whitson+ software
(courses.whitson.com) 

•Preparation Material
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Software
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Access to whitson+

www.courses.whitson.com

Username: your e-mail

Password: ShalePVT2024

*Send an e-mail to support@whitson.com if you need help to login. 

Use Google Chrome, Firefox or Microsoft Edge. Internet Explorer 

won’t work. 

DO NOT USE YOUR COMPANY SPECIFIC DOMAIN

mailto:support@whitson.com
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Course Progress “Logic”

Fluid Sampling

2

Lab Analysis

3

PVT Model

4

Engineering

5

Petroleum Fluids

1

C1

C7+
C2

EOS

“EOS Model Development”

“EOS Model Utilization”
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Course Goals
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Course Goals

• Classify reservoirs into black oils, volatile oils, near-critical fluids, 
gas condensates, wet gases & dry gases

• Understand the difference between “in-situ” and “reservoir” representative 
samples

• Conceptionally understand what an EOS model is and what the inputs are 

• Predict PVT data (composition) from readily available data and EOS model

• Perform fluid initialization on a “shale well” using readily available data

• Estimate PVT properties at initial reservoir conditions from EOS model

• Calculate OOIP | OGIP for OIL, GAS and TWO-PHASE systems

• Generate PVT tables (Bo, Rs, μo, pbub | Bgd, rs, μg, pdew) from EOS model

• Understand the most important parts of a PVT report
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PVT for the first 
time?
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Exposed to PVT First Time?

Recommendation  
Read Petroleum 
Reservoir Fluid 

Properties in digital 
handouts 
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PVT – What is This?

pV = nRT

• In this course, we’ll review 

the physical and 

thermodynamic properties 

of gas and oil 

• As commonly done, the 

phase and volumetric 

behavior of petroleum 

reservoir fluids is referred to 

as PVT (pressure-volume-

temperature)

• What about water?
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Vocabulary
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Vocabulary

1

2

3

4

EOS Model

Compositions

Flash

K-Values

5 “Representative” Samples

6 Solution CGR (rs) aka Vaporized Oil Ratio (Rv) 
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What is an EOS Model?

EOS

1

3

2

T

P

zi

1



20Copyright © Whitson AS

What is a Composition?

1zi

“The amount of different components”

usually expressed in mol%.

zi = ni  / ∑j nj  | yi = nVi  / ∑j nvj | xi = nLi  / ∑j nLj

  Total Vapor Liquid

2
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What is a Composition?

Petroleum FluidsSparkling WaterAir

zi

N2 = 78%

O2 = 21%

…

zi

H2O = 99%

CO2 = 1%

…

zi

C1

C2 

…

C7+

Total = 100% Total = 100% Total = 100%

2
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Flash … Neither of These3
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Flash3

Two-phase isothermal flash 

calculations are used for 

processes with vapor/liquid-

equilibrium (VLE). 

A flash takes a feed stream (zi) 

that separates into a Vapor (yi) 

and Liquid (xi) phases – or 

remains a single phase.
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Flash

Gas 

(yi)

Oil 

(xi)

Temperature

P
re

ss
u

re

CP

BP

DP

2

3

2 3

3

1
1

Under

saturated Saturated

Incipient 

Phase, yi

Two-Phase

Saturated

zi
zi=xi

Fg = 
𝐧𝐠
𝐧𝐭𝐨𝐭



25Copyright © Whitson AS

K-Values

iii xyK /

Ki represents the relative preference 

of a component i to “be” in the gas 

phase or oil phase:

• Ki > 1 – Relative preference is to be in gas 

phase

• Ki < 1 – Relative preference is to be in the oil 

phase

4

For a given 

temperature (T) and 

composition (zi)
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“Representative” Samples

“Reservoir Representative”

Any uncontaminated fluid sample produced from a reservoir is 
automatically representative of that reservoir

“In-situ Representative”

A sample representative of the original fluid(s) in place 

Accuracy of PVT Data ≠ “In-situ Representivity” of Sample

5
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Samples to use in PVT model development?5

• In PVT / EOS model development one 

would like to use all “reservoir 

representative” samples.

• Why? You want a PVT model that works 

well for all times, not only time = 0.

• “In-situ” representative samples should 

be used together with a proper EOS 

model to initialize your reservoir model 

(called “Fluid Initialization”). 
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Example5

Classification

Sample while

pwf > psat

(not mud 

contaminated)

Sample while

pwf < psat

(not mud 

contaminated)

Mud 

Contaminated 

Sample

“In-situ 

Representative”

“Reservoir 

Representative”

✓ 

✓ 

x

✓ 

x

x
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Solution CGR/OGR (rs) aka Vaporized Oil Ratio (Rv) 6

Quantifies: condensate in solution with reservoir gas phase

Hence, relevant for: 

• wet gas 

• gas condensates 

• oil reservoirs below bubblepoint (gas out of solution)

Units: STB/MMscf (most common)

Symbol: 

• SPE - rs (“little rs” or solution CGR / OGR) 

• Industry - Rv (“RV” or vaporized oil ratio)

 rs and Rv is used interchangeably throughout the course
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PVT Fundamentals
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PVT has an Impact on Every Discipline in the Petroleum Domain!

Pipe Flow ProcessReservoir RTA/PTA Reserves

PVT & Fluids

C1

C7+
C2
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Key Concept

1 m3 is not always 1 m3 

Courtesy: Knut Uleberg, Equinor
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1 reservoir m3 ≠ 1 separator m3 ≠ 1 stock tank m3

What we mean by “not same”: the volume is the same, 1 m3. 

The amount of mass, density, composition, and monetary 

value are different.
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Process dependencies

Single-stage flash

• Final product 

volumes depends 

on pressure & 

temperature 

conditions, and the 

path to get there…

• GOR and FVF are 

process dependent.

GOR = 6700 

scf/sep.bbl

GOR = 9250 

scf/STB

GOR = 8400 

scf/STB

Test separator

(*) P = 870 psia, T = 170 F

Courtesy: Knut Uleberg, Equinor
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A little quiz | Reservoir Oil or Gas?

Light, gas Intermediate Heavy  fractions, oil

Courtesy: Knut Uleberg, Equinor

Total C7+ mole fraction ~ 0.24

Molar distribution

M
o

le
 F

ra
c
ti

o
n
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A little quiz | Reservoir Oil or Gas?

Light, gas Intermediate Heavy  fractions, oil

Courtesy: Knut Uleberg, Equinor

Total C7+ mass fraction ~ 0.78

Mass distribution

M
a
s
s
 F

ra
c
ti

o
n
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Key to Understand PVT

Heptanes Plus (C7+)

Courtesy: Knut Uleberg, Equinor



38Copyright © Whitson AS

Classification of fluids | Simulated process GOR vs C7+ content

Dry gas

Wet gas

Near critical fluid

Gas condensate

Volatile oil
Black-oil

GOR*: Simulated process GOR, Sm3/Sm3

C7+ mol%

10 20 30 40 50 60

10

100

1000

10000

G
O

R
* 

(S
m

3
/S

m
3
)

Courtesy: Knut Uleberg, Equinor

Reservoir Oil     Reservoir Gas
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Reservoir Fluid Classification

Fluid type C7+ GOR

Unit (mol%) (scf/STB)

Black Oil >25 <1,000

Volatile Oil 14-25 1,000-3,000

Near Critical (BP or DP) 11-14 3,000-4,000

Gas Condensate 1-11 4,000-100,000

«Wet» Gas <1 >100,000

«Dry» Gas 0 ∞

B
la

c
k
 O

il

V
o
la

ti
le

 O
il

* These numbers are rules of thumb and should not be interpreted as absolutes.  

N
e
a
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c
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ti
c
a
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G
a
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e
n
s
a
te

“G
a
s
”

“Wet” “Dry”
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Reservoir Fluid 

Classification
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Classification of Reservoir Fluid Systems

Volatile Oil

Gas Condensate

Wet Gas

Black Oil

Dry Gas

The classification of 

reservoir fluid systems is 

determined by:

• The location of the reservoir 

temperature with respect to 

the critical temperature and 

cricondentherm.

• Location of the first-stage 

separator pressure and 

temperature with respect to 

the phase diagram of the 

reservoir fluid.
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Black Oil

T

p
For A Given Mixture, zi (e.g. 40%C1, 60%n-C10)

pb

Vro

p

pb

Tbo

T = Tbo

𝑉𝑟𝑜 =
𝑉𝑜(𝑝, 𝑇)

𝑉𝑡(𝑝, 𝑇)
Vo = oil phase volume

1
Black Oil
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Volatile Oil

T

p
For A Given Mixture, zi (e.g. 40%C1, 60%n-C10)

pb

Vro

p

pb

Tvo

T = Tvo

𝑉𝑟𝑜 =
𝑉𝑜(𝑝, 𝑇)

𝑉𝑡(𝑝, 𝑇)
Vo = oil phase volume

1
Volatile Oil
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Retrograde Gas Condensate

T

p
For A Given Mixture, zi (e.g. 40%C1, 60%n-C10)

pd

Vro

p

pd

TGC

T = TGC

𝑉𝑟𝑜 =
𝑉𝑜(𝑝, 𝑇)

𝑉𝑡(𝑝, 𝑇)
Vo = oil phase volume

1

0

Gas Condensate
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Wet Gas

T

p
For A Given Mixture, zi (e.g. 40%C1, 60%n-C10)

Vro

p

TWG

T = TWG

𝑉𝑟𝑜 =
𝑉𝑜(𝑝, 𝑇)

𝑉𝑡(𝑝, 𝑇)
Vo = oil phase volume

1

0

Wet Gas

Tsp, psp
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Dry Gas

T

p
For A Given Mixture, zi (e.g. 40%C1, 60%n-C10)

Vro

p

TDG

T = TDG

𝑉𝑟𝑜 =
𝑉𝑜(𝑝, 𝑇)

𝑉𝑡(𝑝, 𝑇)
Vo = oil phase volume

1

0

Dry Gas

Tsp, psp
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Volatile Oil Reservoir Fluid Example

Gas Bubbles 

Form and 

Rise

Gas

Oil

pressure pressurepressure

Temperature

P
re

ss
u

re

CP

BP

DP

1

2

3

1 2 3
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Gas Condensate Reservoir Fluid Example

BP

Temperature

P
re

ss
u

re

DP

CP

1

2

3

Oil Droplets 

Form and 

Fall

Gas

Oil

pressure pressurepressure

1 321 2 3
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Petroleum Fluids – Example Compositions

Fluid_Properties_metric.pdf
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Question: What’s Wrong with this Table?
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Question: What’s Wrong with this Table?
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Fluid Initialization
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Fluid Initialization 1.01

Goal: Be able to use readily available data, specially producing GOR (or CGR),

to initialize a reservoir fluid for an unconventional well
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We’ll do the same as Steph Curry – Practice!

Practices 500 3-pointers

per day!

Around 200,000 

per year!

… repetition is key!
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PVT: Practical Wisdom

10
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Pressure [psia]

Oil Psat (oil) Oil (extrapolated) Gas Psat (gas) Gas (extrapolated)

G
O

R

Saturation Pressure

GOR = Rs

GOR = 1/rs

• The producing GOR (CGR) will 

tell you a lot about the well.

• In general, below psat, producing 

GORs are expected to increase. 

• Wet gases: CGR (GOR) is constant 

over time (no psat).

• Dry gas: doesn’t produce 

hydrocarbon liquids.

• Rule of thumb: 

Critical point ~4000 scf/STB 

(or ~ 250 STB/MMscf).

~4000 scf/STB 
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PVT: Practical Wisdom
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Case Study 1
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Case Study 2
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Case Study 3
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Case Study 4
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Case Study 5
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Case Study 6
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Case Study 7
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Case Study 8
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Case Study 9
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Case Study 10
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Case Study 11
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Case Study 12
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PVT: Practical Wisdom
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Case Study 13
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Case Study 14
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Case Study 15
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Case Study 16
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Case Study 17
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Case Study 18
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Case Study 19
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Special Case 1: Saturated Reservoirs

• Initial Conditions: pi =< psat

• In the “two-phase party” from day 1

• GOR rising from day 1!

• Initial producing GOR is a function 

of relative mobilities 

• … so isn’t as easy as Rsi (or 1/Rvi) = 

initial producing GOR  
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Special Case 1: Saturated Reservoirs

• Initial Conditions: pi =< psat

• In the “two-phase party” from day 1

• GOR rising from day 1!

• Initial producing GOR is a function 

of relative mobilities 

• … so isn’t as easy as Rsi (or 1/Rvi) = 

initial producing GOR  
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Special Case 2: Constant GOR as pwf < psat

Either … 

1.Wrong psat (i.e. it should be lower), pwf is still above psat

2.Large pressure loss from matrix to wellbore (e.g. low Fcd)

3.Dual PVT system (e.g. one oil layer and one gas layer)
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Special Case 3: GOR goes down, before up!

Solution gas drive reservoirs

Pure solution gas drive reservoirs are subject to 

different stages of idealized production. 

In chronological order, the stages are typically ..

1.Production while undersaturated (pwf > psat)

2. Production while saturated but the free gas is 

immobile (producing gas-oil ratio goes down)

3. Production while saturated and the free gas is 

mobile (the producing gas-oil ratio is increasing)

More: https://petrowiki.spe.org/Solution_gas_drive_reservoirs
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Special Case 4: Decreasing GOR … 

Can be explained with a dual PVT system.  

High GOR (or gas) layer depletes first (lower viscosity).

Low GOR layer depletes later (higher viscosity).

Sources: SPE-200014, URTeC-2882502, SPE-190797
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Note: GOR Trends as pwf < psat

Infinite conductive fractures

(GOR shoots up as pwf < psat) 
Low Fracture Conductivity

(Linearly increasing GORs)
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Petroleum 

Fluids
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Alkanes (Paraffins)

CnH2n+2

Structure Formula

H C

H

H

n-C4H10 : normal-butane

C

H

H

C

H

H

C

H

H

H

H C

H

H

C

H

C

H

H

H

CH H

H

i-C4H10 : iso-butane
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Cyclo-alkanes (Naphtenes)

C3H6 : cyclo-butane

CH2

CH2 CH2

CnH2n

Structure Formula
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Aromatics

Benzene

CH

CH CH

CH

CH CH

Toluene

C

CH CH

CH

CH CH

CH3
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Watson’s Characterization Factor
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Watson's Characterization Factor

10

11

12

13

Increasing 

paraffinicity

Paraffinic: Kw ~ 12.5-13.5 

Naphthenic: Kw ~ 11-12.5 

Aromatic: Kw ~ 8.5-11 
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Non-Hydrocarbons

N2 : Nitrogen H2S : Hydrogen Sulfide

NN S
HH CO O

CO2 : Carbon Dioxide

• Typically found in reservoir fluids.

• CO2 and H2S are unwanted & costly to deal with.

• N2 reduces heating value.
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NGL, LPG and LNG – what’s the difference?

Might be confusing …

• LNG – liquefied natural gas ~ C1

• LPG – liquified petroleum gas ~ C3 and C4

• NGL – natural gas liquids ~ C2, C3, C4, C5

• Crude oil – C5+/C6+ 
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C1 – methane – used for heating 

C2 – ethane → ethylene → plastic

C3 – propane → mainly heating (also plastic)

C4 – butane → heating, cooking 

C3/C4 – “Autogas”, fuel in Europe, Turkey, Australia

 C5+ - Natural gasoline / various kinds of fuel

Source: https://www.eia.gov/todayinenergy/detail.php?id=5930

Enough compositions already … Back to everyday life!
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Fluid Sampling
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Why Sample?

Compositions

• Separator gas

• Separator oil

• Wellstream

• In-situ Reservoir

PVT Data

• Direct use

• Developing a PVT Model

• Validating an existing PVT model

• Fluid initialization
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General Recommendation …

Collect samples early in a well's lifetime at low drawdowns 
and stabilized rates (GOR) 

Strongly Recommend that the following data reported

1. Separator GOR in scf/sep.bbl

2. Separator conditions at sampling 

3. Field shrinkage factor used (=SF)

4. Flowing bottomhole pressure (FBHP) at sampling 
(or wellhead pressures) 

5. Initial reservoir pressure

6. Time and date of sampling

7. Production rates during sampling 

8. Dimensions of sample container 

9. Total number and types of samples collected 

10. Target formation
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“Representative” Samples

“Reservoir Representative”

Any uncontaminated fluid sample produced from a reservoir is 
automatically representative of that reservoir

“In-situ Representative”

A sample representative of the original fluid(s) in place 

Accuracy of PVT Data ≠ “In-situ Representivity” of Sample
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“Representative” Fluid Samples

Insitu-representative Samples: 
• Represents the original fluid(s) in 

the volume drained by the well 

during sampling.

• May vary as a function of depth, 

from one fault block to another, 

and between non-communicating 

layers.

• May be difficult to measure 

directly, due to near-wellbore 

multiphase behavior in saturated, 

slightly undersaturated, and low-

permeability reservoirs

• Accurate insitu-representative 

samples are used to determine the 

initial hydrocarbons (oil and gas) in 

place.

Reservoir-representative Samples: 

• Represents any fluid produced from the 

reservoir.

• Are easily obtained.

• May be used to create estimates of the 

insitu-representative fluids!

• All reservoir-representative samples 

(having reliable PVT data and 

compositions) should be used in 

developing an EOS fluid 

characterization. 
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Production Test Sampling

Separator gas composition – yspi

• Biggest uncertainty is C6+ amount

• Important for GP (LPG & NGL) design

• Useful in “Simplified EOS Approach”

Stock-tank oil API – γAPI

• Key data for EOS modeling

• Field measurement ±1-2 oAPI

Separator oil composition – xspi

• Not always measured

• Reported density should not be used, 

as it is not measured

Reservoir temperature – TR

• Reservoir representative

• In-situ representative
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Separator Sampling

Separator gas composition – yspi

• 20-liter container; duplicate containers

• Opening pressure QC

Separator oil composition – xspi

• Flash-GC compositional measurement

• C7+ extended GC distribution

• C7+ MW and SG important data

Recombination GOR – Rsp (rsp)

• Unit: scf/separator-bbl !

• Includes only 1st-stage separator gas

Separator Sampling Conditions (Tsp,psp)

• QC: Hoffman plot | pb(Tsp)=psp
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99

Bottomhole Sampling
When is bottomhole sampling 
recommended?

• Undersaturated oils 

• Flowing BHP higher than saturation 
pressure

When is bottomhole sampling not 
recommended?

• Gas Condensates

• Foaming oils

• Highly viscous oils

Quality check:

• BH pressure during sampling

• Production conditions prior to sampling

• Perforation interval

• Characterization Factor (Multiple samples)
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100

Openhole Formation Testing (OFT) Samples
When is OFT sampling recommended?

• Oil reservoirs 

• Gas and gas condensate reservoirs

• Layered reservoirs with different fluid

• Compositional grading reservoirs

When is OFT not recommended?

• Highly viscous crude

• Low permeability reservoirs

• Carefully when oil-based drilling mud (OBM) 
has been used

Quality checks:

• Saturation pressure and 

• Sampling transfer

• Volume of sample
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101

Sampling Summary
Advantages of Subsurface sampling

• Collect desired sample directly 

• Can maintain full pressure of sample

• Avoids use of surface separators (surface metering uncertainties)

• Avoids recombination errors

• Less sampling information transmitted to PVT laboratory

Advantages of OFT samples

• Collects the fluid sample directly the formation 

• Fluid sample from a very narrow depth interval

• Not affected by fluid segregation in the well

Advantages of separator samples

• Large fluid volumes can be taken

• Easy, convenient and less expensive when surface separators are already on location   

• No tools in the borehole

• Does not require single phase fluid in the well bore
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PVT Report 1.01
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PVT Report 1.01

• How does a PVT report look like?

• Lab experiments and what they measure    

• Most data in a PVT report is not measured

• Compositions - the most uncertain lab experiment

• API gravity are defined at stock tank conditions

• We don’t put the PVT reports into a simulator

1

2

3

4

5

6
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PVT Report Example1
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Types of PVT Lab Tests

Compositional

Measurements

Gas Chromatography (GC)

TBP Distillation

Standard PVT Experiments

CCE

Depletion Tests (DLE/CVD)

Multistage Separator Test

Viscosity Experiment

Gas EOR Experiments

Slimtube Experiment

Swelling Test

Multi-Contact Vaporization

wi

wi, Mi, γi

psat

VL,rel

Bo

μo

MMPMC

MMPFC

Ev

2
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Accuracy in Measured Data

• Saturation pressure:

• Generally within +/- 5 bar. 

• Gas condensate might have 

larger uncertainties.

• Gas Z-factors:

• Generally between 1-3%.

• Stock tank oil densities:

• Within 1-2%

• STO (and C7+) Molecular Weight:

• Generally within 5% 

• Not uncommon to see variation 

between different labs of 5+%. 

Reservoir oil densities:

• Pycnometer densities generally 

within 1-2%.

• DLE densities within 2-4% 

(except last stage!).

Separator Bo:

• Generally  1-2%.

Separator GOR:

• Within 5-10%

• Could be higher for lean gas 

condensates

2
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Accuracy in Measured Data

DLE GOR (Released gas):

•Last stage (bleeding process) 

should not be weighted!

•Generally within 3 %

•Gas composition C6+ content not 

accurate!

CVD gas compositions:

•High quality laboratories should 

get C7+ within +/- 0.2 mole-%.

•Challenge in lean gas 

condensates

•Material balance check is ALWAYS 

needed – a lot of bad data exists.

CVD cumulative gas produced:

•Generally within 2-3 recovery-% 

CCE and CVD oil relative volumes:

•Generally within 5% for volatile oil 

and rich gases depending on type of 

the cell

•Large errors can be expected for 

very lean and near-critical fluids.

Minimum Miscibility Pressure:

•High quality measurements should 

give oil recoveries above MMP 

higher than 95%

•With a well-designed experiment 

(pressure selection) MMP should be 

within +/- 5 bar.

Viscosities:

•Oil: Large uncertainties, generally 

10-20%

•Gas: Usually not measured

2
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What is Measured vs Calculated?3
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A “Recombined” Composition3

Recombined 

Reservoir Fluid
Stock Tank

Fluids

zi

Separator 

Fluids

xsep

ysep

xsto

ysto

Flashed

Liquids

xflo

yflg
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Mathematical Recombination3
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Petroleum System Components

• Non-hydrocarbons (CO2, H2S, N2)

• Pure compounds with known 
molecular weight 

• Hydrocarbons (C1, C2, C3, iC4, … , C6)

• Isomers (e.g. Benzene, Toluene)

• Single-Carbon Number (SCN) 
components 

• e.g. C10, C11, C12 

(Oil based mud compounds ~C12 – C20) . . . 

. . . 

Non-HC

Pure compounds

Mix of isomers &

SCN components

SCN components

4
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Compositional Measurement
• Mass of the individual 

components is measured using 
a gas chromatograph (GC)

• Weight fractions, wi, of each 
component is converted to 
moles by using the total sample 
molecular weight, M, and the 
individual component molecular 
weight, Mi

𝑧𝑖 = 𝑤𝑖
𝑀

𝑀𝑖

From GC, 

might be 

uncertain

a) Pure compounds: Known 

b) SCN: estimated

c) Cn+: unknown 

Measurement 

accuracy ±5-10% 

Known

Estimated

4
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Warning! Sep. Oil Liquid Analysis Density

The lab reported density 

should not be used as it is 

not at separator conditions. 

5

API gravity and specific 

gravity is by definition at 

stock tank conditions.
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We don’t put the PVT reports into a Simulator6

“We need to build a model that replicate the data (i.e. EOS or BOT)!”
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PVT Models
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PVT Models

Models used to establish p-V-T relationship for different fluids 
produced from a basin/field/reservoir

All engineering calculations require the following for a given 
pressure, temperature and composition:

• Amount of each phase

• Density of phase

• Viscosity of each phase

Two types of PVT models are generally used:

• Compositional (EOS) model

• Black oil PVT (BOPVT) model (derived from EOS models)
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EOS Models 

Overview
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Main Variables of EOS Model

•Tank model (base case):

Pressure is defined by the

average force on the tank

wall or p=F/A

Courtesy: Markus Hays Nielsen
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Main Variables of EOS Model

•Tank model (base case):

Courtesy: Markus Hays Nielsen
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Main Variables of EOS Model

•Tank model (double speed): Increasing temperature

Courtesy: Markus Hays Nielsen
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Main Variables of EOS Model

•Tank model (double number of particles):

Increasing 

molar amount

Courtesy: Markus Hays Nielsen
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Main Variables of EOS Model

•Tank model (increase volume): Increasing volume
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Main Variables of EOS Model

•Tank model must follow the following:

•𝑝 ∝ 𝑇

•𝑝 ∝ 𝑛

•𝑝 ∝ 1/𝑉

•Result: Ideal Gas Law 𝑝 =
𝑛𝑅𝑇

𝑉

Courtesy: Markus Hays Nielsen
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The evolution towards the modern EOS

v

RT
p =

2v

a

bv

RT
p −

−
=

))(()( bbvbbv

a

bv

RT
p

 +−+−
−

−
=

Van der Waals (1873)

SRK (1972) – α = 1 and β = 2

PR (1976, 1978) – α = 0 and β = 2

The ideal gas law (1834)

An equation of state:

Thermodynamic equation 

relating pressure, volume, 

temperature and internal 

energy of fluids.

Courtesy: Knut Uleberg, Equinor
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What is an EOS Model?

EOS

1

3

2

T

P

zi
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What is an EOS Model?

Component Name

 Molecular Weight

  Critical Pressure

   Critical Temperature

    Acentric Factor

     Volume Shift

      Critical Z-factor

C1-C2

   C1-C3

   …

    C36+ – C36+ 

Equation Component Properties Binary Interaction Parameters 

(BIPS)

Peng Robinson 

(PR)

Soave-Redlich-

Kwong (SRK)

C7+ properties 

need to be 

approximated 
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Underlying Technology: Basin-Wide EOS Models

Wells with 

PVT Data
PVT Reports All wellsEOS Model
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Multi-Sample (Common) EOS Model

11

1

1

2

3

EOS
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Multi-Sample (Common) EOS Model

Each sample is described 

by the same EOS model, 

where each sample’s 

unique composition is all 

that is required to 

accurately predict PVT 

data for that specific fluid

EOS

11 12

13 14
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Multi-Sample EOS Models

Basin A Basin B Basin C

(ഥC𝟏𝟐)A (ഥC𝟏𝟐)B (ഥC𝟏𝟐)C

(ഥC𝟏𝟏)A
(ഥC𝟏𝟏)B (ഥC𝟏𝟏)C≠ ≠

≠≠

(ഥC𝟑𝟎𝐩)A (ഥC𝟑𝟎𝐩)B (ഥC𝟑𝟎𝐩)C
≠≠

⋮ ⋮ ⋮
Can be

radically 

different
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Predict 

Compositions
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Compositions are Needed for EOS Calculations! 

EOS

1

3

2

T

P

zi
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… But how do you get them? 

PVT Report

4

~100 pages

Storage

3

~20,000 USD/year~10,000 USD

Sampling

1

C1

C7+
C2

~40,000 USD

Laboratory Analysis

2

“Needle in the Haystack”

Find Composition

5
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PVT Report Example
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• PVT Studies: 

~25 – 50 USDk/well

• Sample Storage:

~20 USDk/well/year

• Gets expensive fast!

• Typically: 

~ performed on <1% 

of Wells in a Basin
Wells with PVT studies

Setting the Stage
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What to do 

with the >99% 

other wells?

Wells without PVT studies

Wells with PVT studies

Setting the Stage
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Use the Available Data

Source: https://manual.whitson.com/modules/fluid-definition/ 

Initial producing GOR

Initial producing GOR & API gravity

Initial producing GOR & saturation pressure

Dry/wet gas composition

Separator compositions

Available Data whitson+

10000 scf/STB 

600 scf/STB & 38 API

80% C1, 15% C2, 5% C3

1250 scf/sep.bbl & 3000 psia

See Example Later
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Black Oil PVT
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PVT Properties are a function of

PVT = 𝑓 𝑝, 𝑇, 𝑧𝑖

▪ Pressure

▪ Temperature 

▪ Composition
"PVT" means the collection of intensive properties (independent on amount), e.g. psat, density
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PVT Properties

PVT = 𝑓 𝑝, 𝑇, 𝑧𝑖

▪ 2+(n-1) dimensions

▪ n: is the number of components

▪ n = 2 → “Black oil model”



141Copyright © Whitson AS

The Black Oil Model
can be used for ALL

Reservoir Fluid Systems

Important

… and NOT only for black oil!!!
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So.. why is it Called “Black Oil” Model?

• Just tradition 

•Two component PVT model

Oil in the tank – “the oil in the tank was always black”

Surface gas  

“Should have been called the 

two-component PVT model”

- Keith Coats (1934-2016), Pioneer in Reservoir Simulation
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Black Oil PVT Model

•Two components:  Surface oil and surface gas

•Model Parameters:   Bo, Rs, μo | Bgd, rs, μg

•Compositions of reservoir oil and gas phase:  Rs | rs

•Model is dependent on surface processing
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Oil Reservoir

“Reservoir Oil”:

“Surface Oil 

Originating from 

Reservoir Oil”

:𝑉ത𝑜𝑜

𝑉ത𝑜𝑜

“Surface Gas 

Originating from 

Reservoir Oil”

:𝑉ത𝑔𝑜

𝑉ത𝑔𝑜𝑉𝑜

𝑉𝑜
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Gas Reservoir

“Reservoir Gas”:

“Surface Oil 

Originating from 

Reservoir Gas”

:𝑉ത𝑜𝑔

𝑉ത𝑜𝑔

“Surface Gas 

Originating from 

Reservoir Gas”

:𝑉ത𝑔𝑔

𝑉ത𝑔𝑔𝑉𝑔

𝑉𝑔
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Black Oil PVT Properties

p, T

p = pd(T)

p = pb(T)

𝑽𝒈(𝒑, 𝑻)

𝑽𝒐(𝒑, 𝑻)

𝑉ത𝑔𝑔

𝑉ത𝑜𝑔

𝑉ത𝑔𝑜

𝑉ത𝑜𝑜

P

P

𝐵𝑔𝑑 =
𝑉𝑔

𝑉ത𝑔𝑔

𝑟𝑠 =
𝑉ത𝑜𝑔

𝑉ത𝑔𝑔

𝐵𝑜 =
𝑉𝑜
𝑉ത𝑜𝑜

𝑅𝑠 =
𝑉ത𝑔𝑜

𝑉ത𝑜𝑜

𝜇𝑔

𝜇𝑜

Process Dependent Process Independent
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Oil Formation Volume Factor, Bo

UndersaturatedSaturated

Bubblepoint
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Solution GOR, Rs

UndersaturatedSaturated

Bubblepoint
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Gas Formation Volume Factor, Bgd

UndersaturatedSaturated

Dewpoint
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𝑏𝑔𝑑 =
𝑉ത𝑔𝑔

𝑉𝑔

Gas Expansion Factor, bgd

UndersaturatedSaturated

Dewpoint
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Solution OGR, rs (=Rv)

UndersaturatedSaturated

Dewpoint
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Equilibrium Ratios 
(K-values)
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K-Values

iii xyK /

Ki represents the relative preference of 
component i to “be” in the gas phase or oil 
phase:

1. Relative preference is to be in gas phase: Ki > 1

2. Relative preference is to be in the oil phase: Ki <1
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K-values

Preference of a component to be in the 
vapor phase compared to liquid phase

E.g. KC1 > KC10

Physically relevant when a fluid system 
exists in two phases at given p and T

𝐾𝑖 =
𝑦𝑖
𝑥𝑖

For a given 

temperature (T) and 

composition (zi)
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K-values (low pressure range)

𝐾𝑖

1L
o
g
 s

c
a
le

pressure

Constant Temperature ‘T’

Low pressure (<1500psia)

𝐾𝑖 ≈
𝑝𝑣𝑖(𝑇)

𝑝

𝑝𝑣𝑖(𝑇)

𝐾𝑖 = 𝑓(𝑝, 𝑇, 𝑧𝑖 , 𝐸𝑂𝑆)

Pressure

~-1

Relevant mainly for surface 
processing where “T” is also lower

Log scale
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K-values (high pressures range)

𝐾𝑖

1L
o
g
 s

c
a
le

Log pressure

Constant Temperature ‘T’

Low pressure (<1500psia)

𝐾𝑖 ≈
𝑝𝑣𝑖(𝑇)

𝑝

𝑝𝑣𝑖(𝑇)

𝐾𝑖 = 𝑓(𝑝, 𝑇, 𝑝𝑘(𝑧𝑖, 𝑇))

Shape of the nose

Relevant at 

reservoir conditions

Convergence pressure, pk

• Ki=1 for all components



157Copyright © Whitson AS

Retrograde Condensation

• Heavier the component – longer the condensation region

p

p

O
il 

S
a
tu

ra
ti
o
n
 (

%
)

p

rs

CondensationVaporization

V
a
p
o
ri
z
a
ti
o
n

pd

L
o
g
(K

i)

pk

What happens here???

“Negative flash” 
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Initial Fluids in Place
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Oil Reservoir – In-place Numbers

𝑉ത𝑜𝑜

𝑉ത𝑔𝑜

𝑉𝑜

𝑁𝑜 = 𝑂𝑂𝐼𝑃𝑜 =
𝑉𝑜
𝐵𝑜𝑖

=
7758 𝐴 ℎ 𝜑(1−𝑆𝑤𝑖)

𝐵𝑜𝑖
 [STB]

𝐺𝑜 = 𝑂𝐺𝐼𝑃𝑔 = 𝑁𝑜𝑅𝑠𝑖 [scf]
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Gas Reservoir – In-place Numbers

𝑉ത𝑜𝑔

𝑉ത𝑔𝑔

𝑉𝑔

𝐺𝑔 = 𝑂𝐺𝐼𝑃𝑔 =
𝑉𝑔

𝐵𝑔𝑑𝑖

=
7758 𝐴 ℎ 𝜑(1−𝑆𝑤𝑖)

𝐵𝑔𝑑𝑖
 [scf]

𝑁𝑔 = 𝑂𝑂𝐼𝑃𝑔 = 𝐺𝑔𝑟𝑠𝑖  [STB]
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In-place volumes: All Reservoir Fluids, Two Equations

𝐺 = 𝑁 ∗  𝐺𝑂𝑅𝑡𝑜𝑡𝑁 =
𝐻𝐶𝑃𝑉

𝐹𝑉𝐹𝑡𝑜𝑡
original gas in placeoriginal oil in place

Source: https://manual.whitson.com/modules/bot/
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Total Formation Volume Factor (FVFtot)

Source: https://manual.whitson.com/modules/bot/



163Copyright © Whitson AS

Total Gas-Oil Ratio (GORtot)

Source: https://manual.whitson.com/modules/bot/
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Exercise: What is OGIP and OOIP?

Oil Gas Two-Phase

HCPV = 5000 MRB 

OOIP

OGIP

2590 MSTB 

5.18 BSCF

846 MSTB 

8.46 BSCF

Total GOR 2000 scf/STB 10000 scf/STB 2000 scf/STB 

Total FVF 1.93 RB/STB 5.91 RB/STB 2.46 RB/STB 

2032 MSTB 

4.06 BSCF
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Black Oil Table 
Generation

Advanced Topic
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Black Oil Table (BOT)

p Rs Bo μo rs Bgd μg 

… … … … … …

… … … … … …

… … … … … …

Pressure Oil Gas

@ T = constant

Pipe Flow

3

Process

4

Res. Simulation

1

RTA/PTA

2



167Copyright © Whitson AS

What is a BOT a function of?
Or what’s required to create it?

… That’s what we’ll learn today!

EOS | Temperature | Composition | Surface Process
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Black Oil PVT - Recap
• Two component PVT model: Oil and Gas

• Three properties are defined for each component:

• Composition (Rs | rs)

• Formation volume factor (Bo | Bgd)

• Viscosity (μo | μg)

• Surface oil and gas densities are assumed constant: 

• 𝛾ത𝑜𝑜 = 𝛾ത𝑜𝑔 ≠ 𝑓(𝑅𝑠, 𝑟𝑠)

• 𝛾ത𝑔𝑜 = 𝛾ത𝑔𝑔 ≠ 𝑓(𝑅𝑠, 𝑟𝑠)

• PVT properties are process dependent (assumed constant)

• Reservoir temperature is assumed constant
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Black Oil PVT - Recap

p, T

p = pd(T)

p = pb(T)

𝑽𝒈(𝒑, 𝑻)

𝑽𝒐(𝒑, 𝑻)

𝑉ത𝑔𝑔

𝑉ത𝑜𝑔

𝑉ത𝑔𝑜

𝑉ത𝑜𝑜

P

P

𝐵𝑔𝑑 =
𝑉𝑔

𝑉ത𝑔𝑔

𝑟𝑠 =
𝑉ത𝑜𝑔

𝑉ത𝑔𝑔

𝐵𝑜 =
𝑉𝑜
𝑉ത𝑜𝑜

𝑅𝑠 =
𝑉ത𝑔𝑜

𝑉ത𝑜𝑜

𝜇𝑔

𝜇𝑜

Process Dependent Process Independent
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Repeat: Course Summary

1 m3 is not always 1 m3 
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Black Oil PVT 
Properties are a Function 

of Surface Process

Repeat

… Not viscosity!
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BOT from EOS – Requirements

1. Equation of State (EOS) Model

2. Temperature

3. Composition (zBOi)

4. Surface process

e.g. Multi-stage separator (psp1, Tsp1, …, psc, Tsc

5. Reservoir depletion process

• CCE | CVD | DLE
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Traditional Black Oil Tables (<1980)

Bo

Rs

μo

rs

1/Bgw

μg

Don’t use!
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Modified Black Oil Tables (~1980)

Bo

Rs

μo

rs

1/Bgd

μg
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Modified Black Oil Tables (~1980)

Bo

Rs

μo

rs

1/Bgd

μg
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Extrapolated Black Oil Table (~2000)

Bo

Rs

μo

rs

1/Bgd

μg

Critical Point
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Black Oil Tables 
can be used for ALL

Reservoir Fluid Systems

Repeat:

… and NOT only for black oil systems !!!
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Reservoir Water
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Reservoir Water

• Water viscosity (μw) ranges 
0.3 cp (>250 F) to about 1 cp 
at ambient temperatures.

• Water compressibility (cw) 
ranges 2.5 to 5 x 10-6 1/psi.

• Finally, reservoir brines exhibit 
only slight shrinkage (<5%) 
when produced to the surface.

• The brine that is sharing pore 
space with hydrocarbons 
always contains limited about 
of gas in solution (mainly 
methane), ranging 10-35 
scf/STB. 
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Software
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whitson+: Set Zoom to 70-80%

Click here

(Alternatively, CTRL + “-” 

on keyboard)
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whitson+: Maximize Screen by “F11”

Click F11
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whitson+: More Screen Real Estate 
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whitson+: More Screen Real Estate 
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whitson+: Navigation Panel

Navigation Panel

Overview of all modules
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whitson+: Software Hierarchy

Software Hierarchy

Fields → Projects → Wells
Next / Previous Well 

in a project
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whitson+: Create Multiple Analyses for a Well

Save an analysis 

(or interpretation) 

for a given well
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whitson+: Create Multiple Analyses for a Well

Save an analysis 

(or interpretation) 

for a given well

Click here and it will bring 

you to the well overview 

page

Click here and it will bring 

you to the well overview 

page

Well Overview page
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whitson+: Change Units

Change Units
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whitson+: Input Card

These “Cards” is 

what we call an 

“Input Card” and 

they contain input 

information for the 

different features-

Open by 

clicking here
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whitson+: Support Ticket

You can also e-mail 

support@whitson.com
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whitson+: Manual

User manual
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Important Shortcut: Refresh

• Refresh shortcut: “CTRL + R”

• Use if you experience 

• Bad connection

• The browser is “stuck”
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Exercise
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1. Drag and drop GOR to match initial data

This line

What is the insitu representative GOR?
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2. Copy your composition into excel
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3. Specify the non-hydrocarbons
N2 = 0.5%, CO2 = 0.7%, H2S = 0%
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4. Check your compositions
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5. What’s the saturation pressure?

What’s the 

saturation 

pressure?

What’s the 

saturation 

pressure?
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6. Change to GOR + psat method
GOR = 750 scf/STB, Saturation pressure = 3000 psia 

(somewhat computationally expensive method)

Change method 

here
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7. Create a synthetic PVT Report

What type of reservoir fluid is this?
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8. What is the OOIP and OGIP?
HCPV = 10 000 RB

Answer: OOIP = 7.2 MMSTB, OGIP = 5.4 BSCF
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8. Export the Black Oil Table to Excel
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9. Calculate Recovery Factors 
pa = 1000 psia | Cum GOR = 5000 scf/STB
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10. Dry gas data
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10. Use a specific gravity of 0.6
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11. Specify the non-hydrocarbons
N2 = 0.5%, CO2 = 0.7%, H2S = 0%
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12. Take a look at the PVT table
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whitson

We support energy companies, oil services companies, investors and government organizations with expertise and 

expansive analysis within PVT, gas condensate reservoirs and gas-based EOR. Our coverage ranges from R&D 

based industry studies to detailed due diligence, transaction or court case projects. 

The company was founded by Dr. Curtis Hays Whitson in 1988 and is a Norwegian corporation located in Trondheim, 

Norway, with local presence in USA, Middle East, India and Indonesia.

We help our clients find best possible answers to complex questions and assist them in the successful decision-

making on technical challenges. We do this through a continuous, transparent dialog with our clients - before, during 

and after our engagement.

Whitson AS

Skonnertvegen 7, 7053

Trondheim, Norway

Whitson USA LLC

www.whitson.com

3410 W Dallas St.

Houston, TX 77019, US

Copyright © Whitson AS

Confidential Report 

Curtis Hays Whitson, PhD

curtishays@whitson.com

Asia-Pacific Middle East AmericasGlobal

Kameshwar Singh, PhD

singh@whitson.com

Ahmad Alavian, PhD

alavian@whitson.com

Mathias Carlsen, MSc

carlsen@whitson.com
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Quantifying 
Separator Shrinkage

Advanced Topic
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Practical Observations

Rates are measured at separator conditions and seldom 
reach “stock tank” conditions on a single well basis 
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Practical Observations

Rates are measured at separator conditions and seldom 
reach “stock tank” conditions on a single well basis 

▪ Albeit not correct, separator measured rates are 
frequently used directly in well analysis

→ overestimate the profitability 
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Practical Observations

Rates are measured at separator conditions and seldom 
reach “stock tank” conditions on a single well basis 

▪ Albeit not correct, separator measured rates are 
frequently used directly in well analysis

→ overestimate the profitability 

▪ If separator shrinkage is accounted for, common to apply 
one constant shrinkage factor for well and/or field

→ shrinkage factors change with time 
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Topics to Investigate …

▪ Under what circumstances is …

…  separator oil shrinkage important?

… expected to change considerably with time?

▪ How use an EOS model to estimate daily 

… separator oil shrinkage factors (STB/sep.bbl)

… separator oil flash factors (scf/STB)
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Separator Oil Shrinkage
A Recap 
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Separator Rates vs. Stock Tank Rates

“Measured”

“To use”
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Separator Rates vs. Stock Tank Rates

𝐺𝑂𝑅𝑡𝑜𝑡 =
𝐺𝑂𝑅𝑠𝑒𝑝

𝑆𝐹
+ 𝐹𝐹

“Measured”

“Must be Calculated”

GORtot: total stock tank gas oil ratio

GORsep: separator gas oil ratio

SF: separator oil shrinkage factor 

FF: separator oil flash factor
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Separator Oil Shrinkage … A Recap

*This is a cartoon not to scale
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Separator Oil Shrinkage … A Recap

*This is a cartoon not to scale
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Separator Oil Shrinkage … A Recap

*This is a cartoon not to scale

1

2

2

2
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PRESSURE

TEMPERATURE

Separator Oil
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e.g. 80%

TEMPERATURE

PRESSURE

Shrinkage of Oil and Additional Gas “Flashed Off”

Liberated

Gas

Stock 

Tank

Oil
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Separator Oil Shrinkage Factor (SF)

𝑆𝐹(
𝑆𝑇𝐵

𝑠𝑒𝑝. 𝑏𝑏𝑙
)

<0.6 - 1
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Separator Oil Flash Factor (FF)

𝐹𝐹 (
𝑠𝑐𝑓

𝑆𝑇𝐵
)

Essentially solution GOR of separator oil
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1. Under what circumstances is …

…separator oil shrinkage important?

…expected to change with time?
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To Understand When It is Important, we …

… a wide range of in-situ fluids (reservoir oils | reservoir gas)

… with a compositional reservoir simulator

… controlled on a constant BHP profile

… i) fluids produced at constant separator conditions 

… ii) fluids produced at changing separator conditions

Symmetry-Element Model
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What is Separator Oil Shrinkage a Function of?

Surface Process 

▪ Separator Stages - fixed

▪ Separator Pressure (psep) – f(time)

▪ Separator Temperature (Tsep) – f(time)

Wellstream composition (zi) – f(time)

▪ Amount of different components (C1 | C7+)
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Separator Conditions Changes Substantially with Time
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Constant Separator Conditions
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Lower Shrinkage Factors at Higher GORs
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Summary

Shrinkage factors and flash factors should 
be updated daily if one or more of these 
criteria are met: 

▪In-situ solution GOR (Rs) > 1000 scf/STB

▪Separator conditions changing with time

▪Wellstream compositions changing with time 

… Large changes in producing GOR with time

… Rapid decline in bottomhole pressure

… Frequent shut-ins (“CGR kicks”)

… Wells subject to gas EOR 
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2. EOS model to estimate daily

… separator oil shrinkage factors

… separator oil flash factors
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… Daily Separator Conditions 
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… plus Daily Separator Volumetric Rates …
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… used to Estimate Daily Wellstream Composition
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… that’s used to Calculate Daily Shrinkage Factors
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… and the Associated Daily Flash Factor
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EOS 

Workflow

Advanced Topic
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EOS Workflow

Fluid Sampling Database

Know-How & 

Experience

Thermodynamic Principals 

& Physical Constraints

Raw data

PVT Database Creation EOS Model Tuning

Data Filtering &

Quality Control

  

Production Database

EOS Model Utilization

✓  

Value AddC7+ Characterization
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Heptanes Plus (C7+) Characterization

It is impossible with chemical 
separation techniques to identify the 
C7+ components individually

Even if they were identified, it would 
not be possible to measure the critical 
properties and other EOS parameters 
for fluids heavier than C20

This problem is solved practically by 
making approximate characterization 
of the heavier compounds with 
experimental and mathematical 
methods

Carbon 
Number

Formula
Number of 

Isomers

C1 CH4 1

C2 C2H6 1

C3 C3H8 1

C4 C4H10 2

C5 C5H12 3

C6 C6H14 5

C7 C7H16 9

C8 C8H18 18

C9 C9H20 35

C10 C10H22 75

C11 C11H24 159

C12 C12H26 355

C13 C13H28 802

C14 C14H30 1858
M

o
re

 C
o
m

p
le

x
 &

 U
n
k
n
o
w

n
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Heptanes Plus (C7+) Characterization

The approximate procedure can be 
split into three main tasks:

1. Dividing the C7+ into a number of 
fractions with known molar 
compositions

2. Defining the molecular weight, 
specific gravity, and boiling point 
of each fraction

3. Estimating the critical properties 
(Tc, Pc), acentric factor, volume 
shift, and the BIP’s for each of the 
fractions

Carbon 
Number

Formula
Number of 

Isomers

C1 CH4 1

C2 C2H6 1

C3 C3H8 1

C4 C4H10 2

C5 C5H12 3

C6 C6H14 5

C7 C7H16 9

C8 C8H18 18

C9 C9H20 35

C10 C10H22 75

C11 C11H24 159

C12 C12H26 355

C13 C13H28 802

C14 C14H30 1858
M

o
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m

p
le

x
 &

 U
n
k
n
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n

1

2

3



256Copyright © Whitson AS

Modeling of C7+ - Gamma Model

Need 3 parameters for 
gamma model:

Average Molecular 
Weight – MW-C7+

Bound – η

Shape – α

1
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M-g Relationship

• Tuned gamma model 

should give Mi close to 

measured (ASTM) data

• Tuned M-γ relationship 

will then give γi close to 

measured (ASTM) data

• si = f(γi) should give all 

surface oil densities 

within 1-2%
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Tc, pc, ωi and BIPS

Average Cn+ fractions properties can be estimated as 

follows:

– Tci, pci are function of Tbi and gi – Twu correlation

– Volume shifts, si = f(gi) – Calc. from EOS to match given SG

– ωi = f(Tci, pci, Tbi) – Edmister correlation

– BIPS - kij estimated from Chueh correlation using vci and vcj

• vci = f(Tbi and gi) – Twu correlation

3
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Pseudoization / Lumping

Lumping/pseudoization is the 

process of going from a detailed 

EOS to an EOS with less 

resolution that still accurately 

predict the PVT properties of 

relevant fluids

EOSxx

47

EOSp

10
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Extrapolated 

BOTs

Advanced Topic
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Why Extrapolate the Black Oil Table?
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Why Extrapolate the Black Oil Table?
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Why Extrapolate the Black Oil Table?
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Why Extrapolate the Black Oil Table?
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Example: Black Oil Table
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Example: Black Oil Table

For the following cases

i. GOR = 1,504 scf/STB and grid cell pressure = 8500 psia

ii. GOR = 15,024 scf/STB and grid cell pressure = 8500 psia

iii. GOR = 10,000 scf/STB and grid cell pressure = 5000 psia

Use the plot “GOR vs. pres” and determine what type of fluid 
associated with each of the cases above. 

• Two-Phase Saturated | Single-Phase Oil | Single-Phase Gas
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Fluid Type Case i
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Fluid Type Case ii
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Fluid Type Case iii
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Compositional 

Tracking

Advanced Topic
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Daily Wellstream (zi) 

Compositions

1

Seed Compositions

2

Production Database

1

3

Welltest Database

2

v v
v v

v v
v

v
v v

v

zi

Time

Use Readily Available Data + EOS!

*IPTC-19596 summarize methodologies
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Requirements:
▪A properly tuned EOS Model

▪Separator rates (GORsep)

▪Separator conditions (psep,Tsep)

▪ “Seed feed” – estimate of zi

Estimate Wellstream Composition
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Method:

▪Flash “seed feed” to psep | Tsep → yi, xi

▪Recombine yi | xi at GORsep → zi 

 
𝑣: molar volume – M/ρ (calculated from EOS model)

Estimate Wellstream Composition
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Method:

Regress until zi + EOS matches

▪ Sep. gas. (yi) ≈ N2, CO2, C1, …,C6

▪ Sep. GOR ≈ C7+ amounts 

▪Liquid API ≈ C7+ component distribution 

Estimate Wellstream Composition
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“Shale” PVT
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“Shale” Characteristics … a PVT Perspective 

1

4

2 Initially slightly undersaturated / saturated*

Producing GOR – f(pwf)

Span a wide range of fluids (low to high GOR)

3 Rapid decline in bottomhole pressure (pwf)

*with some exceptions (e.g. Bakken, Eagle Ford, Duvernay)
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“Shale” Basins Span a Wide Range of Fluids1
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Basin Initial Reservoir 

Pressure, 

pRi (psia)

Saturation 

Pressure Range, 

psat (psia)

4000 – 10000 2000 - 7000

5000 – 9500 1500 – 3500 

3000 – 7000 2000 - 7000

3500 - 9500 2000 - 7000

3000-10000 1000 – 7000

Eagle Ford

Bakken

Montney 

SCOOP/STACK 

Permian 

✓  

✓  

✓  

✓  

-

Slightly Undersaturated/Saturated2



280Copyright © Whitson AS

Rapid decline in bottomhole pressure (pwf)

Source: Fluid Sampling in Tight Unconventionals (Carlsen et al. 2019)
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“Unconventional” Well Performance

▪Producing GOR strong function of 

▪ Initial GOR (composition)

▪ Flowing bottomhole pressure – pwf

▪ Degree of undersaturation (pRi-psat)

▪ PVT model

▪ Rel. perm

▪ Infinite acting | boundary dominated periods

→ most unknown: GORi, rel. perm, IA/BD

▪“Conventional” reservoirs – GOR(pavg)

Sources: Whitson and Sunjerga 2012; Jones 2017 

4
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What does this Imply?

▪Change in “produced fluid properties”

i.e. GOR | STO API

▪Produced compositions are changing!
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Produced Compositions are Changing Fast!
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Unconventional Fluids Systems

Exhibit strong field-wide fluid 

consistency

i.e. molecular weight – 

specific gravity 

relationship 

PVT properties are highly 

“correlatable” across one 

field/basin

→ allows for the use of 

one unified fluid model 

(field-wide EOS)
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“PVT correlations demonstrate 

strong field-wide consistency 

although the reservoir fluid (i.e. 

composition) varies significantly. 

PVT properties can be 

estimated from one key 

parameter: GOR. This contrasts 

from reservoir fluid complexity in 

conventional reservoirs.”

Unconventional Fluids Systems

Tao Yang (Statoil | Equinor) PVT Specialist Lead

Whitson employee (1999-2005)
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“In conventional rocks, due to 

relatively high permeability, 

fluids migrate within the 

reservoir with a complex 

charging and mixing history… 

The fluid mobility in shale 

reservoirs is much lower, 

reflecting the dramatically 

lower permeability.”

Tao Yang (Statoil | Equinor) PVT Specialist Lead

Whitson employee (1999-2005)

Unconventional Fluids Systems
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“Fluid communication and 

migration is limited. Reservoir 

fluid differences are 

dominantly determined by 

thermal maturity, which is the 

main reason behind the 

consistent PVT correlations 

over large areas.”

Tao Yang (Statoil | Equinor) PVT Specialist Lead

Whitson employee (1999-2005)

Unconventional Fluids Systems
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So … what’s different between the basins?

Basin A Basin B Basin C

(ഥC𝟏𝟐)A (ഥC𝟏𝟐)B (ഥC𝟏𝟐)C

(ഥC𝟏𝟏)A
(ഥC𝟏𝟏)B (ഥC𝟏𝟏)C≠ ≠

≠≠

(ഥC𝟑𝟎𝐩)A (ഥC𝟑𝟎𝐩)B (ഥC𝟑𝟎𝐩)C
≠≠

⋮ ⋮ ⋮
Can be

radically 

different

“C7+ Characterization”
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