

General Information

General Information

- ½ day course
- Interactive class
- Ask questions drive the course emphasis
 - In chat or unmute to speak (mute when not talking ②)
- Will send out all digital material after class
- Some content in this slide deck is meant for presentation purposes, while some parts are meant for reference.

Software

Access to whitson+

DO NOT USE COMPANY DOMAIN! Not same as your company domain

*Send an e-mail to support@whitson.com if you need help to login. Need to use Google Chrome, Firefox or Microsoft Edge. Internet Explorer won't work.

Agenda

Course Agenda

BHP Calculation Fundamentals

- Why calculate BHP
- Input to the BHP calculation
- BHP Correlations
- Flowpaths and artificial lift methods
- BHP Smoothing & Tuning
- Estimate initial reservoir pressure with IPR

Exercises in whitson*

BHP

Unconventional Reservoir Workflow

Flowing Bottomhole Pressures (p_{wf})

Bottomhole Pressure—What?

• The bottomhole pressure (BHP | p_{wf}) is defined in **whitson** as the <u>well pressure at the top of the perforated interval (top perforation)</u>.

Bottomhole Pressure—What?

- The reference point for BHP is set at the deepest point in the well where the full mass flow of the well stream can be found.
- Moving the point for BHP to any other point in the perforated interval (lateral part in tight unconventionals) will require the use of an IPR to model the change in mass flow as you move from heel to toe.

Bottomhole Pressure—What?

- The reference point can be set by the user to anywhere along the well if it is set shallower than the deepest MD in the deviation survey
 - If "Top Perforation MD" is set at well heel, then the full well stream is modeled along the lateral.

Why Calculate BHP?

BHP Calculations—Why?

BHP Calculations—Why?

- The BHP is a required input in many production data analyses.
 - \circ DCA (p_{wf} should be constant)
 - Flowing Material Balance (FMB)
 - Analytical Rate-Transient Analysis (ARTA)
 - Numerical Rate-Transient Analysis (NRTA)
 - Numerical Model
 - Nodal Analysis
 - Production Data Diagnostics

Input to BHP Calculation

Required Input—Production Data

Required Input—Well Data

Wellbore trajectory—Deviation Survey

- oMD vs TVD
- Top and Bottom Perforation Depth (Perforated Interval)

Required Input—Well Data

Well completion—Casing and Tubing Data

- oInner Diameter (ID)
- Outer Diameter (OD)
- Pipe roughness
- oEOT depth

BHP Correlations

BHP Calculations

- oBHP calculations rely on using single-phase flow equations to model multiphase flow.
- Oil and water are lumped together into a liquid phase.
- Liquid and gas are averaged into a single-phase mixture.
 - Averaging is correlation dependent

BHP Correlations

whitson* supported correlations^[1] are

- Hagedorn and Brown (1965)
- Beggs and Brill (1973)
- Gray (1978)
- Woldesemayat and Ghajar (2006)

[1] These are so-called drift-flux models, which is preferred due to their simplicity. The alternative is to solve the momentum- and energy equations for each phase separately, which is commonly referred to as mechanistic models. More in URTeC: 4045619.

BHP Calculations—Pressure Gradient

Gravity: Caused by the weight of the fluids. Acts in the direction of gravity.

Friction: Caused by the pipe wall.

Acceleration: Caused by a rapid expansion of the fluids. Only relevant for gaseous wells near the wellhead for low p_{wh} .

Differences between the Correlations

Correlations—The Common Equation

- The pressure-gradient equation is common to all the correlations.
- The difference between the correlations lies in how the correlations calculate the liquid hold-up
 - > Affects some of the properties in the pressure gradient

Multiphase Flow—Liquid Hold-Up

 ○ The liquid hold-up, H_L, represents the part of the pipe crosssectional area occupied by liquid.

$$H_L = \frac{1}{A_g + A_L}$$

L=O+W

Which BHP Correlation is the most Accurate?

Comprehensive BHP Study

Objective: Measured gauge pressure vs correlations

Wells: 420 wells

Datapoints: >300,000

Basins: Delaware, Midland, DJ, Powder River, Anadarko and Utica

Absolute Error Distribution

Relative Error Distribution

Producing GOR vs Relative Error

Summary

Recommendation 1: Compare BHP calcs to gauge data when available. Use most accurate correlation for wells in the same basin.

Recommendation 2: if no gauge data is available, use Woldesemayat & Ghajar.

Further work: Goal is to expand on this study over the next year (include more wells).

Flow Paths

Flow Paths—Overview

- Several flow paths may be selected in whitson*
 - Casing
 - Tubing
 - Annulus
 - Tubing and Annulus
 - Measured BHP
 - Unknown

Flow Paths—Casing

From wellhead to top perf.

From gauge to top perf.

Flow Paths—Tubing

From wellhead to top perf.

From gauge to top perf.

Flow Paths—Annulus

From wellhead to top perf.

From gauge to top perf.

Flow Path—Tubing and Annulus (Parallel)

From wellhead to top perf.

Flow Paths—Measured BHP

Flow Path—Unknown

From wellhead to top perf.

Flow Path—Unknown

Flow Path—Unknown

Flowing vs Quiet Side Calculations

BHP Calculations Using the "Quiet Side"

Quiet Side:

- Annulus assumed filled with a single-phase fluid with communication to the flowing side at end of tubing (EOT), i.e. no isolation packer.
- Compute BHP by splitting the well into two segments
 - Multiphase flow from top perforation (TP) to EOT
 - 2. Static fluid column from EOT to WH

BHP Calculations Using the "Quiet Side"

Artificial Lift Methods

Artificial Lift Methods

Artificial Lift—Gas Lift

- Three types of gas-lift configurations:
 - Poor-Boy—Injection at EOT
 - Valves—Injection through the first open valve based on the surface pressure
 - Automatic—Injection at equal-pressure point in the tubing and annulus

Artificial Lift—Gas Lift | Poor-Boy

Flow Path: Tubing

Flow Path: Annulus (Reversed gas lift)

Artificial Lift—Gas Lift | Valves

Flow Path: Tubing

Flow Path: Annulus (Reversed gas lift)

Artificial Lift—Gas Lift | Automatic

Artificial Lift—Rod Pump

Three Well Segments

- Top Perforation to EOT:
 Regular multiphase pipe flow
- 2) EOT to Liquid Level in Annulus: Stagnant column of liquid and gas
- 3) Liquid Level in Annulus to Wellhead Single-phase gas flow

Artificial Lift—ESP

The measured pressures from the ESP gauge can be used with the option:

"Calculate from gauge to sandface using measured pressures".

Artificial Lift—Plunger Lift

Can be modeled in two ways:

- If the liquid level is measured, it can be modeled as a rod pump configuration provided the liquid level corresponds to times when the well is producing.
- Model as if plunger lift is not installed by using average rates from the production period. Change the OGR of the well to capture the effect of less liquid in the tubing.

Estimate initial reservoir pressure with IPR

Estimate Initial Reservoir Pressure from IPR

Case study can be found here: https://youtu.be/PkR-AI0DPj4?feature=shared&t=6298

Estimate Initial Reservoir Pressure from IPR

Case study can be found here: https://youtu.be/PkR-Al0DPj4?feature=shared&t=6298

BHP Smoothing

BHP Smoothing

Examples: Gauge Pressures are Smooth!

Examples: Gauge Pressures are Smooth!

BHP Tuning

Tuning of Correlations

 The multiphase flow correlations can be tuned against measured pressures

Tuning of Correlations—ESP

References

Wiki and Manual

- Pipe-flow theory and correlations
 - o https://wiki.whitson.com/pipeflow/well_pressure_calculations/

- o BHP calculations in whitson*
 - o https://manual.whitson.com/modules/well-performance/bottomhole-pressure-calculations/

Exercises

Exercise - Agenda

1. Key Features & Functionality:

- a. BHP calculation for well on gas lift
 - Poorboy
 - Valves
 - Automatic (flowing & quiet side)
- b. Custom BHP / BHP smoothing
- c. BHP calculation setting
- d. BHP calculation for well with rod pump
- e. BHP calculation for well on ESP
- f. BHP calculation for dry gas well / Liquid loading
- 2. BHP tuning exercise
- 3. Advanced: BHP using Mass Upload Sheet

Access to whitson*

DO NOT USE COMPANY DOMAIN! Not same as your company domain

Password: WhitsonBHP2024

*Send an e-mail to support@whitson.com if you need help to login. Need to use Google Chrome, Firefox or Microsoft Edge. Internet Explorer won't work.

Exercise 1.a

BHP Calculations well on gas lift (Poorboy)

Gas Lift – Poorboy Configuration

Gas Lift – Poorboy Configuration

Well Deviation Survey

Top & Bottom Perforation Depths

Wellbore Configuration – Casing & Tubing Data

Using the Tubing / Casing Catalogue

Wellbore Configuration

Exercise 1.a

BHP Calculations well on gas lift (Valves)

Gas Lift – Single Valve Depth

Gas Lift – Multiple Valves vs Depth

Gas Lift - Multiple Valves vs Depth

Exercise 1.a

BHP Calculations well on gas lift (Automatic)

Artificial Lift—Gas Lift | Automatic

Flow Path: Tubing

Flow Path: Annulus (Reversed gas lift)

Gas Lift – Automatic

Gas Lift - Multiple Valves vs Depth

Exercise 1.a

BHP Calculations well on gas lift (Quiet / Silent Side)

BHP Calculations Using the "Quiet Side"

Gas Lift – Automatic

Exercise 1.b

Custom p_{wf} p_{wf} Smoothing

Custom p_{wf} / p_{wf} Smoothing

Exercise 1.c

BHP Calculation Settings

BHP Calculation Settings

Exercise 1.d

BHP Calculations well with rod pump

Well Data – Add New Configuration

Well Data - Select Rod Pump AL Method

Artificial Lift—Rod Pump

Three Well Segments

- Top Perforation to EOT:
 Regular multiphase pipe flow
- 2) EOT to Liquid Level in Annulus: Stagnant column of liquid and gas
- 3) Liquid Level in Annulus to Wellhead Single-phase gas flow

Quiz!

Quiz!

BHP Calculation Settings

Exercise 1.e

BHP Calculations well on ESP

BHP Calculation – Well on ESP

Exercise 1.f

BHP Calculations on a Dry Gas Well (Liquid Loading)

BHP Calculation – Well on ESP

Exercise 2

BHP Correlation Tuning to Measured Gauge Data

BHP Tuning – Measured Gauge Pressures

BHP Tuning – Measured Gauge Pressures

BHP Tuning – Gauge Depth

BHP Tuning – 1st Iteration

BHP Tuning – 1st Iteration

This is the region where the wellbore is still filled with **single phase fluid**.

For this **single phase** region, tuning the **multiphase correlations** doesn't make much sense.

Instead we need to adjust the fluid densities which is done through:

- PVT (for oil & gas densities)
- water salinity (for water density)

Always start with salinity if you have a single phase region.

BHP Tuning – 2nd Iteration (Salinity)

Adjust salinity iteratively until the single phase region gives a better match.

For this exercise, we can focus on the **Hagedorn & Brown** correlation only.

As a reference

- Sea water salinity: 10k 35k ppm
- Brine salinity: 35k 250k ppm

REMINDER: Tuning of Correlations with ESP

Exercise 3

BHP using Mass Upload Sheet

(Multiple Wells)

Mass Upload – Production Data

1	A	В	С	D	E	K	L	M	N
1	Well	Time		Stock Tank Rates			Measured Press	sures, Temperatures and	d Gas-Lift Rates
2	Name	Date	q _o	q _g	$q_{\rm w}$	p _{wf}	P _{tubing}	p _{casing}	q _{g,gas lift}
3	-	•	STB/d	Mscf/d	STB/d	psia	psia	psia	Mscf/d
4	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-01 00:00	504.39	145.0	718	5050	15	2065	
5	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-02 00:00	564.76	186.0	922	5010	15	1990	
6	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-03 00:00	653.51	231.0	753	4796	15	1865	
7	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-04 00:00	740.71	268.0	700	4697	15	1815	
8	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-05 00:00	678.06	261.0	530	4547	15	1715	
9	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-06 00:00	789.29	329.0	580	4886	15	2065	
10	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-07 00:00	915.05	303.0	700	4106	15	1285	
11	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-08 00:00	797.53	260.0	590	3994	15	1185	
12	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-09 00:00	777.06	252.0	530	3853	15	1065	1
13	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-10 00:00	710.58	236.0	429	3754	15	995	
14	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-11 00:00	675.50	223.0	380	3658	15	915	
15	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-12 00:00	635.51	210.0	343	3589	15	855	
16	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-13 00:00	705.49	237.0	360	3445	15	725	
17	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-14 00:00	638.78	208.0	332	3388	15	665	
18	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-15 00:00	735.32	247.0	392	3203	15	505	
10	CDE DATA DEDOCITODY DATACET 4 MELL 4 OCDDEV	2015 04 46 00:00	604.04	204.0	220	2462	4.5	AEE	

Mass Upload – Deviation Survey

	A	В	С
1	Well Name	MD	TVD
2	-	ft	ft
3	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	0	0
4	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	95.1	95.1
5	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	153.6	153.6
6	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	214.8	214.8
7	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	273.1	273.1
8	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	333.9	333.9
9	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	393	393
10	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	454	454
11	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	513.6	513.6
12	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	576.8	576.8
13	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	640	640
14	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	703.3	703.3
15	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	766.3	766.3
16	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	829.5	829.5

Mass Upload – Wellbore Data

	ondo i onpodra (2) ione	· a opecial	ronco rangiinione	.3		,		000	Laiming	, maryono i
Α	1 \checkmark : $[\times \checkmark f_{\!x}]$ Well Name									
	A	E	F	G	Н	1	J	K	L	M
1	Well Name	Use from Date	Flowpath	Wellhead Temperature	Tubing Bottom MD	Tubing ID	Tubing OD	Tubing Roughness	Casing 1 Top MD	Casing 1 Bottom MD
2	-	yyyy-mm-dd or empty	select from list	F	ft	in	in	in	ft	ft
3	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY		Casing	70					0	13915
4	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-03-05	Tubing	70	7022	2.441	2.875	0.0006	0	7029
5	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2018-01-05	Tubing	70	6764	2.441	2.875	0.0006	0	6941
6	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2018-07-26	Tubing	70	6825	2.441	2.875	0.0006	0	6941
7	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2019-05-22	Tubing	70	6764	2.441	2.875	0.0006	0	6941
8	SPE-DATA-REPOSITORY-DATASET-1-WELL-2-HAWK	2021-01-01	Tubing	60	7325	1.995	2.375	0.0006	0	7549
9	SPE-DATA-REPOSITORY-DATASET-1-WELL-3-EAGLE	2017-01-01	Tubing	60	7500	2.441	2.875	0.0006	0	15493
10	SPE-DATA-REPOSITORY-DATASET-1-WELL-4-KITE	2018-01-01	Tubing	65	8332	2.441	2.875	0.0006	0	8384
11	SPE-DATA-REPOSITORY-DATASET-1-WELL-5-SWIFT	2018-01-01	Tubing	70	7626	2.441	2.875	0.0006	0	7693
12	SPE-DATA-REPOSITORY-DATASET-1-WELL-5-SWIFT	2020-06-17	Tubing	70	7626	2.441	2.875	0.0006	0	7693
13	SPE-DATA-REPOSITORY-DATASET-1-WELL-6-SPARROW	2018-01-01	Tubing	70	7682	2.441	2.875	0.0006	0	7559
14	SPE-DATA-REPOSITORY-DATASET-1-WELL-6-SPARROW	2020-06-12	Tubing	70	7682	2.441	2.875	0.0006	0	7559
15	SPE-DATA-REPOSITORY-DATASET-1-WELL-7-LARK	2019-01-01	Tubing	70	8174	2.441	2.875	0.0006	0	7975
16	SPE-DATA-REPOSITORY-DATASET-1-WELL-7-LARK	2020-03-17	Tubing	70	8174	2.441	2.875	0.0006	0	7975
17	SPE-DATA-REPOSITORY-DATASET-1-WELL-8-CARDINAL	2019-01-01	Tubing	70	8211	2.441	2.875	0.0006	0	8031
18	SPE-DATA-REPOSITORY-DATASET-1-WELL-8-CARDINAL	2020-05-12	Tubing	70	8211	2.441	2.875	0.0006	0	8031
19	SPE-DATA-REPOSITORY-DATASET-1-WELL-9-JAY	2019-01-01	Tubing	70	8050	2.441	2.875	0.0006	0	7905
20	SPE-DATA-REPOSITORY-DATASET-1-WELL-9-JAY	2020-05-13	Tubing	70	8050	2.441	2.875	0.0006	0	7905
21	SPE-DATA-REPOSITORY-DATASET-1-WELL-10-CROW	2020-01-01	Tubing	70	8000	1.995	2.375	0.0006	0	7940
22	SPE-DATA-REPOSITORY-DATASET-1-WELL-11-FALCON	2021-02-09	Tubing	60	7595	1.995	2.375	0.0006	0	7499
23										
24										
25										
26										
27										
20			1		1	1		1	1	1

API & Database

Plug-in API

Plug our API into already existing databases and solutions

DB Connection

Expose your DB tables to us and we will make the updates

Input & Output

Flexible API allows for two way communication and dataflow

Appendix

Multiphase Flow

No Slip:

 Assumes gas and liquid flow with the same velocity

$$V_g = V_L$$

Define liquid-flux fraction

$$C_L = \frac{q_L}{q_L + q_q}$$

 Gas and liquid properties are averaged by

$$\rho_m = C_L \rho_L + (1 - C_L) \rho_g$$

$$\mu_m = C_L \mu_L + (1 - C_L) \mu_g$$

Slip:

Assumes gas flows faster than liquid

$$V_g \ge V_L$$

○ Define liquid hold-up (=1-void fraction)

$$H_{L} = \frac{A_{L}}{A_{L} + A_{g}}$$

$$H_{L} = \frac{q_{L}}{q_{L} + \frac{V_{L}}{V_{q}} q_{g}} \geq \frac{q_{L}}{q_{L} + q_{g}} = C_{L}$$

 Gas and liquid properties are averaged by

$$\rho_{s} = H_{L}\rho_{L} + (1 - H_{L})\rho_{g}$$

$$\mu_s = H_L \mu_L + (1 - H_L) \mu_g$$

Multiphase Flow—Liquid Hold-Up

 The liquid hold-up represents the part of the pipe crosssectional area occupied by liquid.

$$C_{L} = \frac{q_{L}}{q_{L} + q_{g}} = \frac{v_{L}A_{L}}{v_{L}A_{L} + v_{g}A_{g}} = \frac{A_{L}}{A_{L} + \frac{v_{g}}{v_{L}}A_{g}}$$

If $v_g > v_L$, then $C_L < H_L$, \rightarrow Using C_L rather than H_L will account for too much gas in the cross-sectional area

Flow Regimes—Gould et al. (1974)

Multiphase Flow—Pressure Gradient

Velocity gradient in acceleration term is approximated as

$$\frac{dv_m}{ds} \approx -\frac{v_{sg}}{p} \frac{dp}{ds}$$

Pressure gradient is rewritten to

$$-\frac{dp}{ds} = \frac{\rho_g \frac{g}{g_C} \cos(\theta) + \frac{f_{Ds} \rho_f V_m^2}{2d_h g_C}}{1 - \frac{\rho_a V_m V_{sg}}{g_C \rho}}$$

 The correlations provide the method of calculating the different terms in the equation

Multiphase Flow—Three Examples

Same well configuration, three different fluids flowing

	ВО	VO	GC
q_o (STB/d)	2000	1000	100
$oldsymbol{q}_g$ (Mscf/d)	1000	2500	2500
q_w (STB/d)	100	100	5
p_{th} (psia)	200	200	200
\mathcal{T}_{wh} (°F)	100	100	100
T _R (°F)	200	200	230
GOR (scf/STB)	500	2500	25000
WOR (STB/STB)	0.1	0.05	0.1

Multiphase Flow—Three Examples

Same well configuration, three different fluids flowing

Multiphase Flow—Pressure Profile

Multiphase Flow—Liquid Fractions

Multiphase Flow—Pressure Gradient

BHP Calculations—Temperature Gradient

Simple thermodynamic relationships give a temperature gradient

on the form

$$-\frac{dT}{ds} = \frac{U\pi d_h}{c_p \dot{m}} (T - T_{rock})$$

Correlations

Correlations—Hagedorn and Brown

- Hagedorn and Brown (1965)
- Liquid hold-up is calculated by four dimensionless numbers and graphical lookup.

Correlations—Hagedorn and Brown

 It's common to apply a modification to the original Hagedorn and Brown when bubble flow occurs. The modification follows the suggested calculation by Griffith.

Bubble flow occurs when

$$1 - C_L < \max \left\{ 1.071 - 0.2218 \frac{V_m^2}{d_h}, 0.13 \right\}$$

Calculate liquid hold-up by

$$1 - C_{L} < \max \left\{ 1.071 - 0.2218 \frac{V_{m}^{2}}{d_{h}}, \ 0.13 \right\}$$

$$H_{L} = -\frac{V_{m} - V_{s} + \sqrt{\left(V_{m} - V_{s}\right)^{2} + 4V_{s}V_{L}}}{2V_{s}}$$

$$V_{s} = 0.8 \text{ ft/s}$$

Calculate the pressure gradient by setting

$$ho_g =
ho_a =
ho_s$$

$$ho_f =
ho_L$$

$$ho_m =
ho_L$$

$$ho_m =
ho_L$$

$$ho_{DS} =
ho_D(
ho_{Re}) \text{ where }
ho_{Re} =
ho_L
ho_L
ho_d / \mu_L$$

Correlations—Beggs and Brill

- Beggs and Brill (1973)
- Relies on calculating the liquid hold-up for horizontal flow, and then correcting it by inclination.

$$\frac{H_L(\phi)}{H_L(0)} = \psi$$

 Both the horizontal liquid hold-up and the inclination correction factor are functions of flow regime.

$$H_{L}(0) = AC_{L}^{\alpha}N_{Fr}^{\beta} \qquad \psi = 1 + \left[(1 - C_{L}) \ln \left(DC_{L}^{\delta}N_{Fr}^{\varepsilon}N_{Lv}^{\varsigma} \right) \right] \left(\sin(\phi) - \frac{1}{3}\sin(\phi)^{3} \right)$$

	Α	α	β	D	δ	ε	ζ
Segregated	0.98	0.4846	-0.0868	0.011	-3.768	-1.614	3.539
Intermittent	0.845	0.5351	-0.0173	2.96	0.305	0.0978	-0.4479
Distributed	1.065	0.5824	-0.0609	1	0	0	0

Correlations—Beggs and Brill

oFlow-regime map in the original paper is replaced by a later suggested map that includes "transition" flow.

Correlations—Beggs and Brill

Friction factor is corrected to account for multiphase flow

$$\frac{f_{DS}}{f_D} = e^{S}$$

where S is a function of $H_{l}(\phi)$.

Calculate the pressure gradient by setting:

$$\rho_g = \rho_a = \rho_s$$

$$\rho_{\rm f} = \rho_{\rm m}$$

$$ho_g=
ho_a=
ho_s$$
 $ho_f=
ho_m$
 $ho_D(N_{
m Re})$ where $N_{
m Re}=
ho_m v_m d_h/\mu_m$

Correlations—Gray

- ○Gray (1971)
 - Published in User's Manual for API 14B SCSSV Sizing Computer Program
- ○Assumes mist flow in well → Only applicable in gas wells
- Corrects the friction term by using an effective roughness that reflects liquid adhering to the pipe wall.

Calculate the pressure gradient by setting:

$$\rho_g = \rho_a = \rho_s$$

$$\rho_{\rm f} = \rho_{\rm m}$$

$$\begin{split} \rho_g &= \rho_a = \rho_s \\ \rho_f &= \rho_m \\ f_{Ds} &= f_D(N_{Re}) \text{ where } N_{Re} = \rho_m v_m d_h/\mu_m \text{ and } k_{eff}/d_h \text{ instead of } k/d_h \end{split}$$

Correlations—Woldesemayat and Ghajar

- Woldesemayat and Ghajar (2007)
- Correlation based on an extensive review of correlations and data for inclined pipe flow.

Fig. 7. Comparison of present study correlation with measured combined total experimental data.

Calculate the pressure gradient by setting:

$$ho_g =
ho_a =
ho_f =
ho_s$$
 $f_D(N_{\rm Re})$ where $N_{\rm Re} =
ho_s v_m d_h/\mu_s$

Tubing Tables / VLP in Numerical Model

Vertical Lift Performance Tables

"Tubing Tables"

whitson

We support energy companies, oil services companies, investors and government organizations with expertise and expansive analysis within PVT, gas condensate reservoirs and gas-based EOR. Our coverage ranges from R&D based industry studies to detailed due diligence, transaction or court case projects.

We help our clients find best possible answers to complex questions and assist them in the successful decisionmaking on technical challenges. We do this through a continuous, transparent dialog with our clients - before, during and after our engagement.

The company was founded by Dr. Curtis Hays Whitson in 1988 and is a Norwegian corporation located in Trondheim, Norway, with local presence in USA, Middle East, India and Indonesia.

Global	Asia-Pacific	Middle East	Americas
Curtis Hays Whitson, PhD curtishays@whitson.com	Kameshwar Singh, PhD singh@whitson.com	Ahmad Alavian, PhD alavian@whitson.com	Mathias Carlsen, MSc carlsen@whitson.com
Whitson AS	Whitson USA LLC		
Whitson AS Skonnertvegen 7, 7053 Trondheim, Norway	Whitson USA LLC 3410 W Dallas St. Houston, TX 77019, US		

