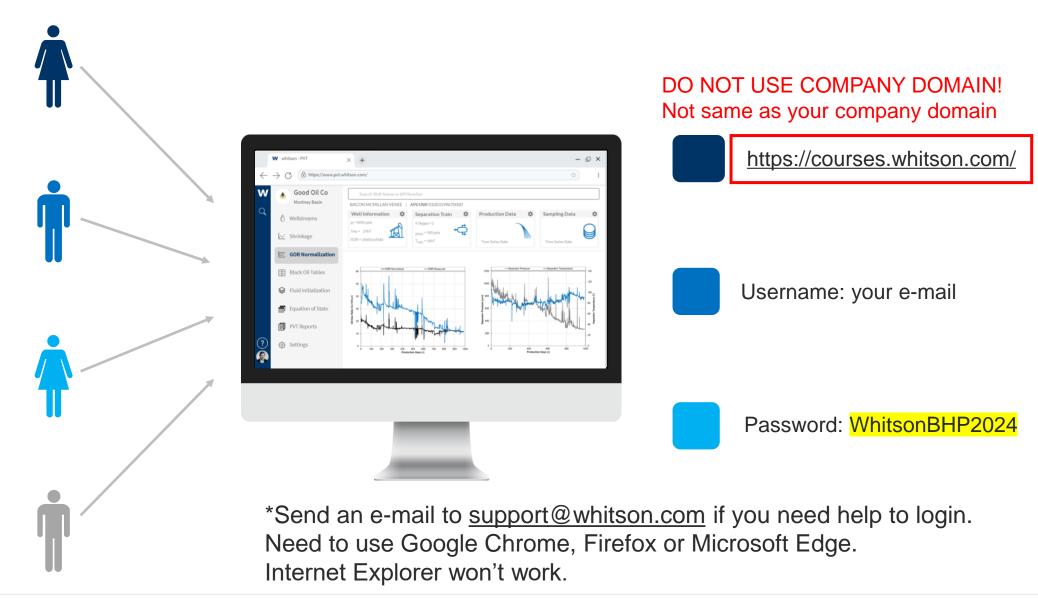
BHP in

whitson+

UPDATED

Mathias Carlsen | Mohamad Dahouk | Stian Mydland Course held Virtually 24 April 2024


General Information

General Information

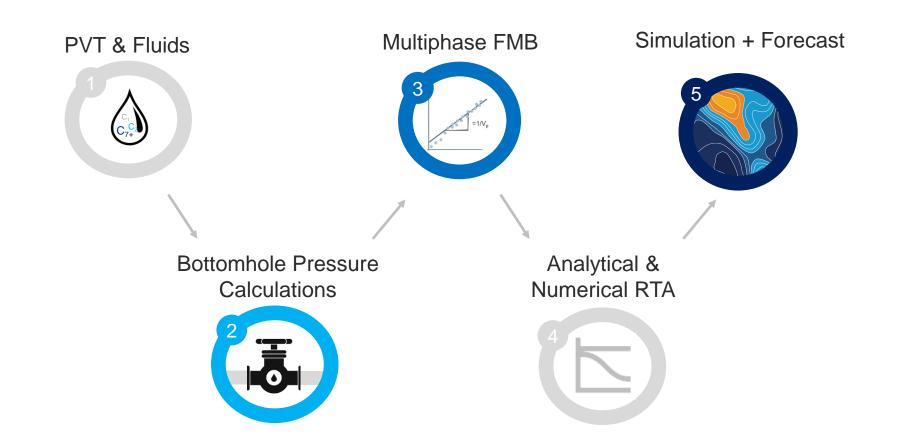
- ¹⁄₂ day course
- Interactive class
- Ask questions drive the course emphasis
 - In chat or unmute to speak (mute when not talking ⁽ⁱⁱⁱ⁾)
- Will send out all digital material after class
- Some content in this slide deck is meant for presentation purposes, while some parts are meant for reference.

Access to whitson⁺

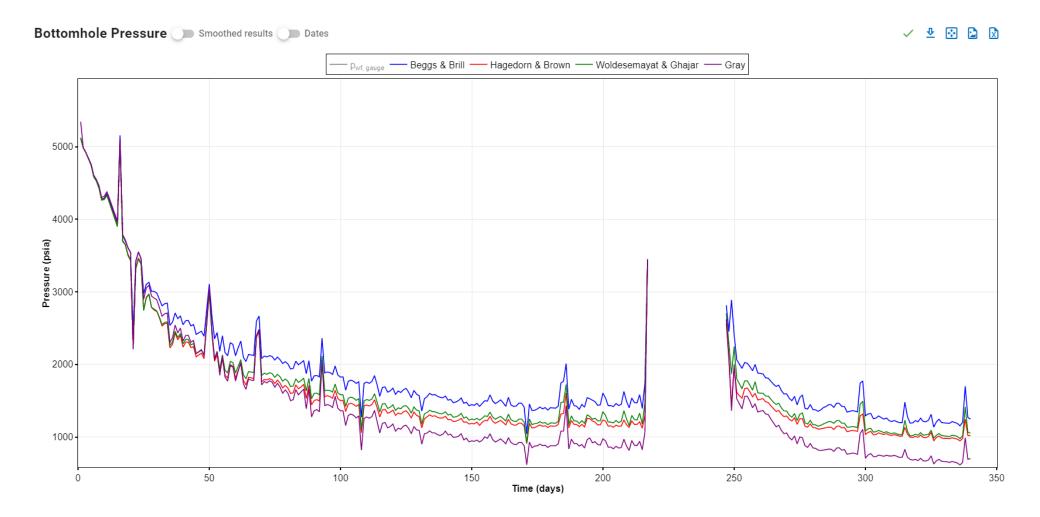
Copyright © Whitson AS

Course Agenda

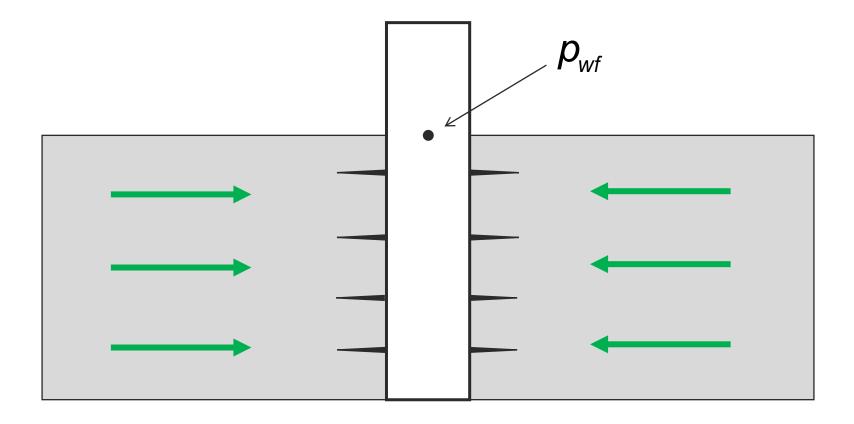
BHP Calculation Fundamentals


- Why calculate BHP
- Input to the BHP calculation
- BHP Correlations
- Flowpaths and artificial lift methods
- BHP Smoothing & Tuning
- Estimate initial reservoir pressure with IPR

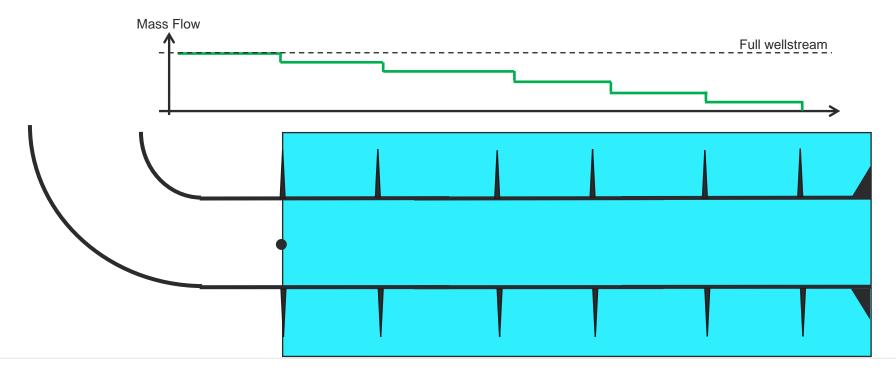
Exercises in **whitson**⁺



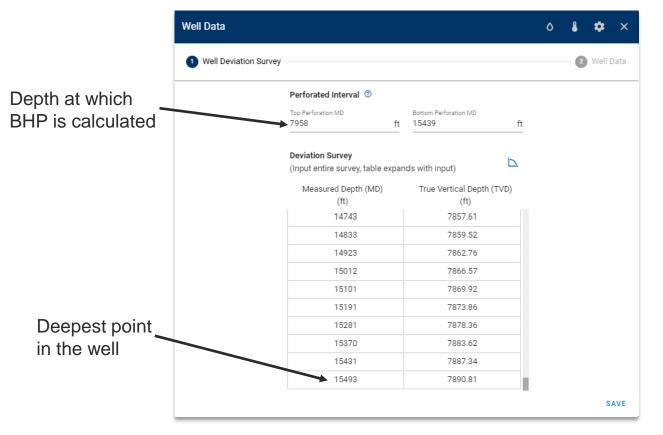
Unconventional Reservoir Workflow


Flowing Bottomhole Pressures (p_{wf})

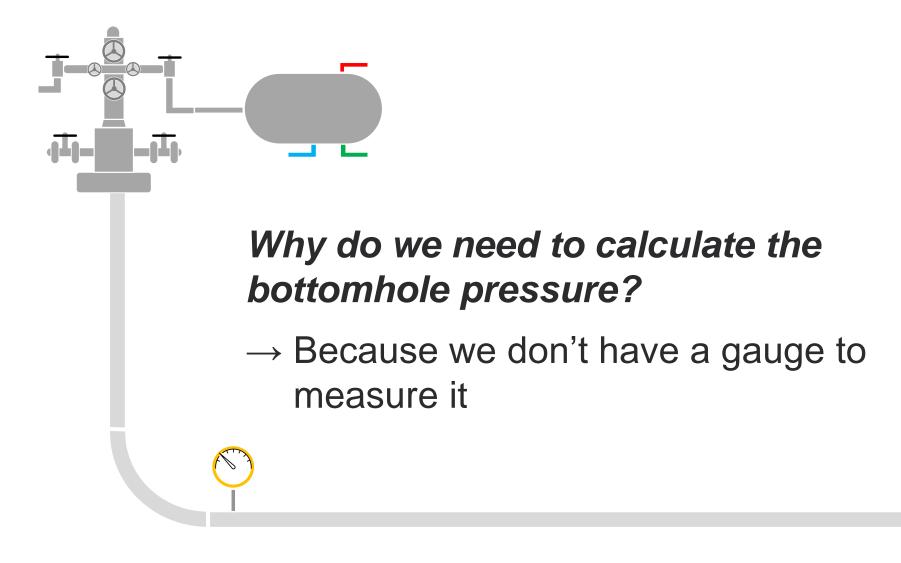
Copyright © Whitson AS


Bottomhole Pressure—What?

• The bottomhole pressure (BHP | p_{wf}) is defined in **whitson**⁺ as the <u>well pressure at the top of the perforated interval (top perforation)</u>.


Bottomhole Pressure—What?

- The reference point for BHP is set at the *deepest point* in the well where the *full mass flow* of the well stream can be found.
- Moving the point for BHP to any other point in the perforated interval (lateral part in tight unconventionals) will require the use of an IPR to model the change in mass flow as you move from heel to toe.


Bottomhole Pressure—What?

- The reference point can be set by the user to anywhere along the well if it is set shallower than the deepest MD in the deviation survey
 - \circ If "Top Perforation MD" is set at well heel, then the full well stream is modeled along the lateral.

BHP Calculations—Why?

BHP Calculations—Why?

• The BHP is a required input in many production data analyses.

 \circ DCA (p_{wf} should be constant)

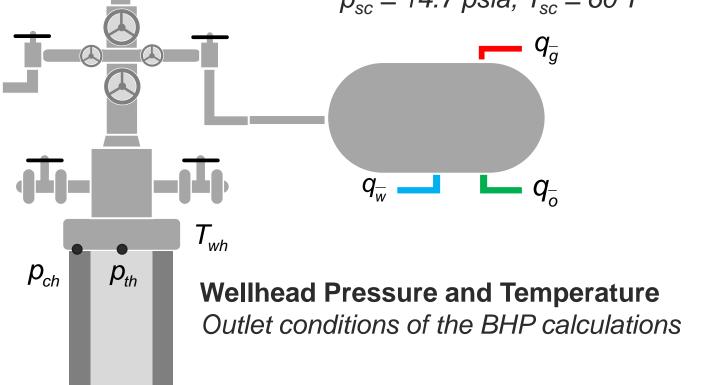
Flowing Material Balance (FMB)

Analytical Rate-Transient Analysis (ARTA)

Numerical Rate-Transient Analysis (NRTA)

Numerical Model

ONOdal Analysis

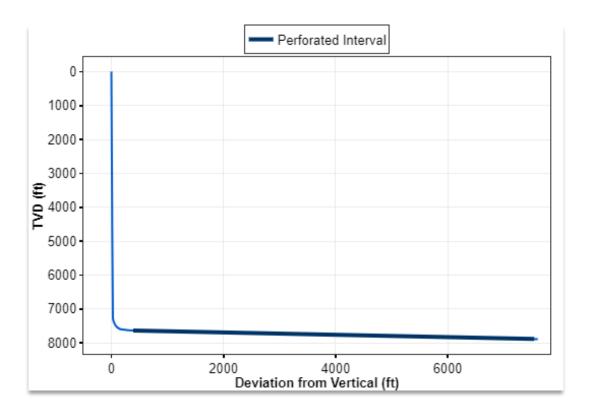

OProduction Data Diagnostics

Input to BHP Calculation

Required Input—**Production Data**

Surface Rates

Produced volumes that are processed and measured at standard conditions $p_{sc} = 14.7 \text{ psia}, T_{sc} = 60^{\circ}\text{F}$

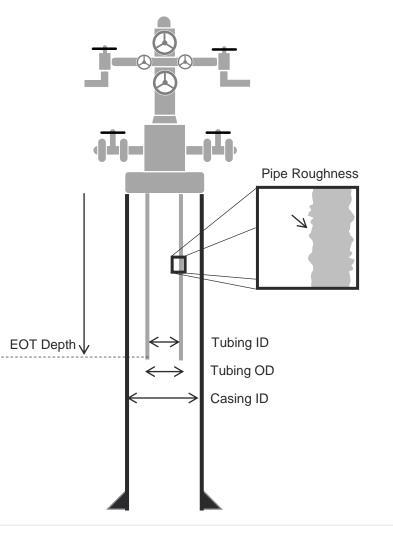


Required Input—Well Data

Wellbore trajectory—Deviation Survey

\circ MD vs TVD

oTop and Bottom Perforation Depth (Perforated Interval)

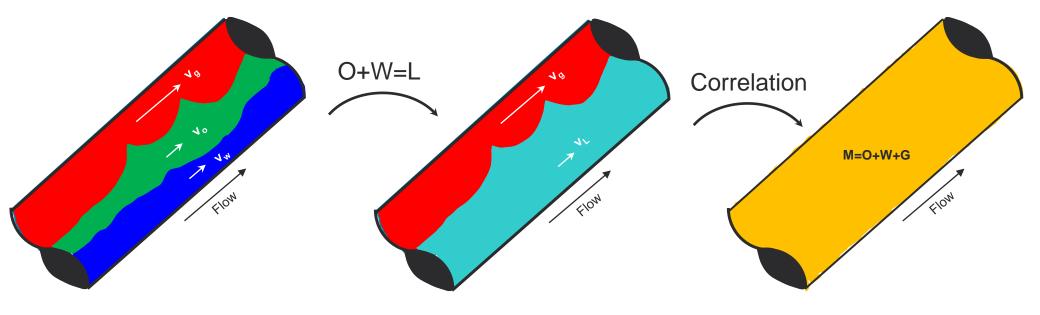


Copyright © Whitson AS

Required Input—Well Data

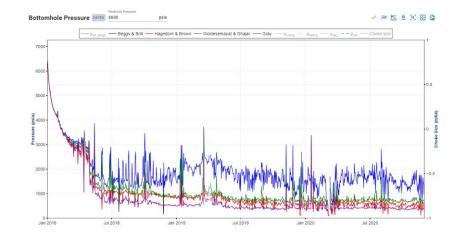
Well completion—Casing and Tubing Data

Inner Diameter (ID)
Outer Diameter (OD)
Pipe roughness
EOT depth



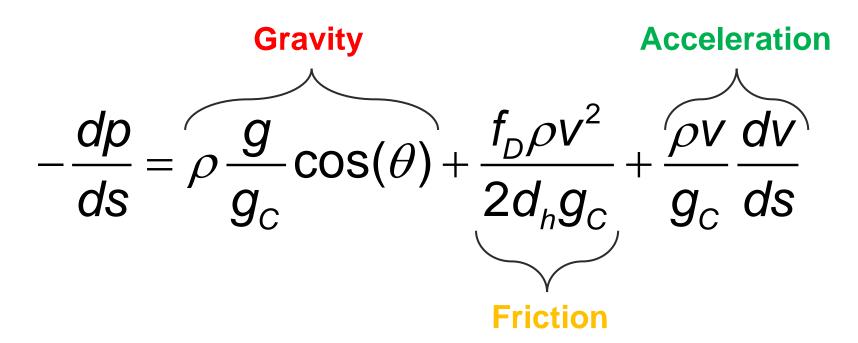
BHP Calculations

- BHP calculations rely on using single-phase flow equations to model multiphase flow.
- ○Oil and water are lumped together into a liquid phase.
- o Liquid and gas are averaged into a single-phase mixture.


• Averaging is correlation dependent

BHP Correlations

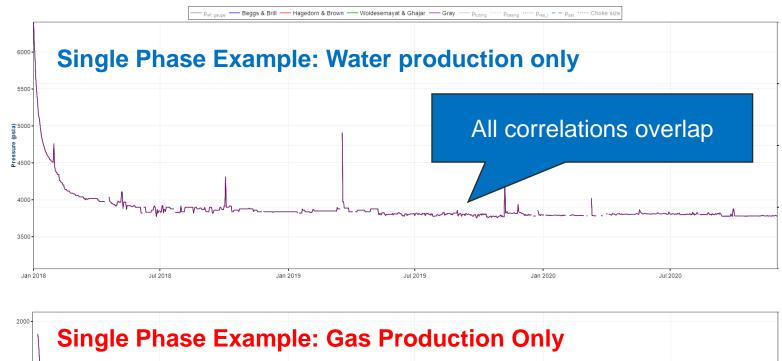
whitson⁺ supported correlations^[1] are

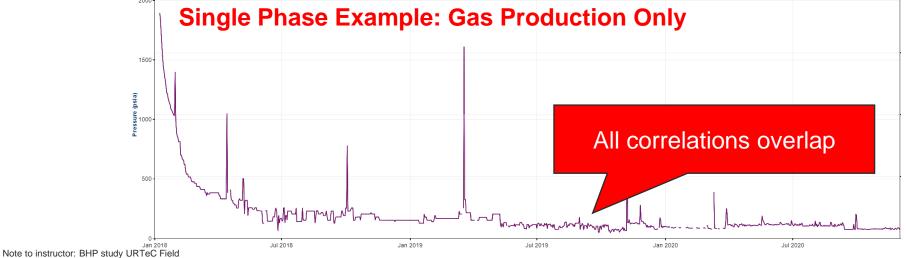

- Hagedorn and Brown (1965)
- Beggs and Brill (1973)
- Gray (1978)
- Woldesemayat and Ghajar (2006)

whitson

^[1] These are so-called drift-flux models, which is preferred due to their simplicity. The alternative is to solve the momentum- and energy equations for each phase separately, which is commonly referred to as mechanistic models. More in URTeC: 4045619.

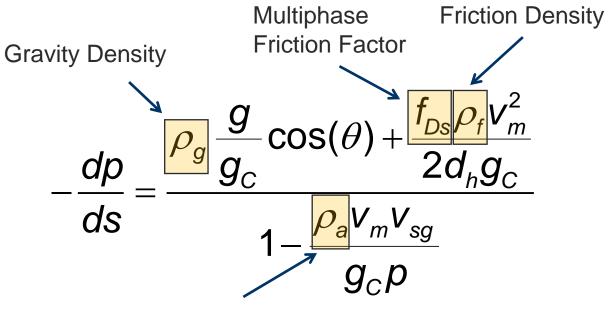
BHP Calculations—**Pressure Gradient**



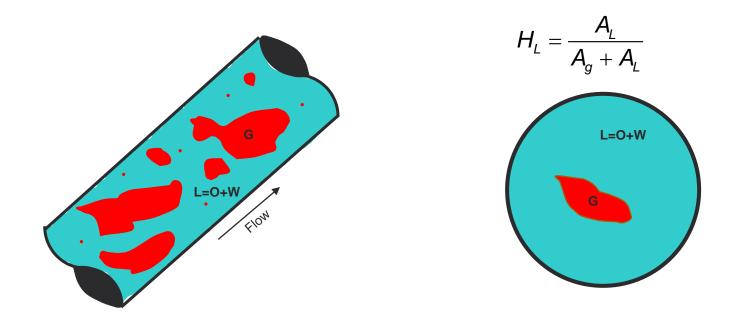

Gravity: Caused by the weight of the fluids. Acts in the direction of gravity.

Friction: Caused by the pipe wall.

Acceleration: Caused by a rapid expansion of the fluids. Only relevant for gaseous wells near the wellhead for low p_{wh} .


Differences between the Correlations

Correlations—The Common Equation


- The pressure-gradient equation is common to all the correlations.
- The difference between the correlations lies in how the correlations calculate the liquid hold-up
 - > Affects some of the properties in the pressure gradient

Acceleration Density

Multiphase Flow—Liquid Hold-Up

 $_{\odot}$ The liquid hold-up, H_L, represents the part of the pipe cross-sectional area occupied by liquid.

Which BHP Correlation is the most Accurate?

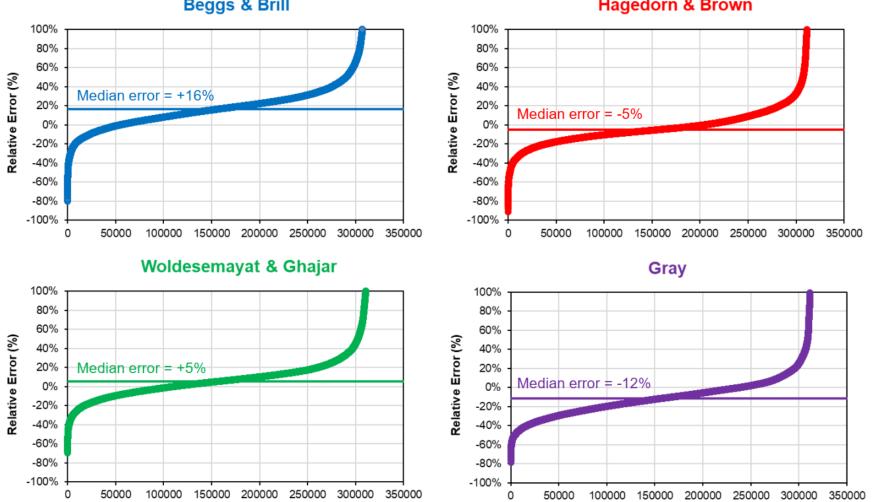
Comprehensive BHP Study

Objective: Measured gauge pressure vs correlations


Wells: 420 wells

Datapoints: >300,000

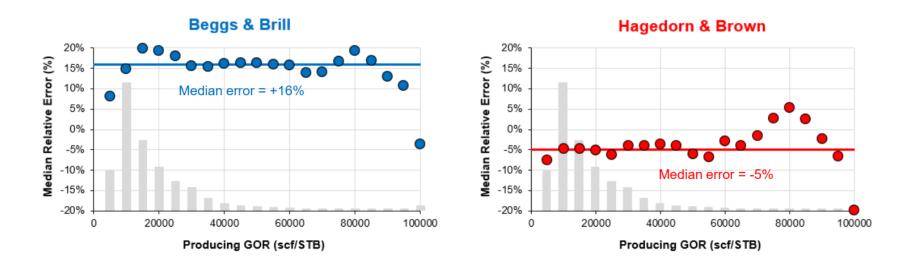
Basins: Delaware, Midland, DJ, Powder River, Anadarko and Utica


Source: URTeC 4045619

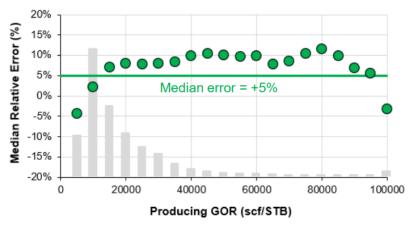
Absolute Error Distribution

Source: URTeC 4045619

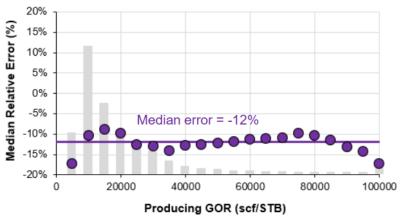
Relative Error Distribution


Beggs & Brill

Hagedorn & Brown


whitson

Source: URTeC 4045619


Producing GOR vs Relative Error

Woldesemayat & Ghajar

whitson

Source: URTeC 4045619

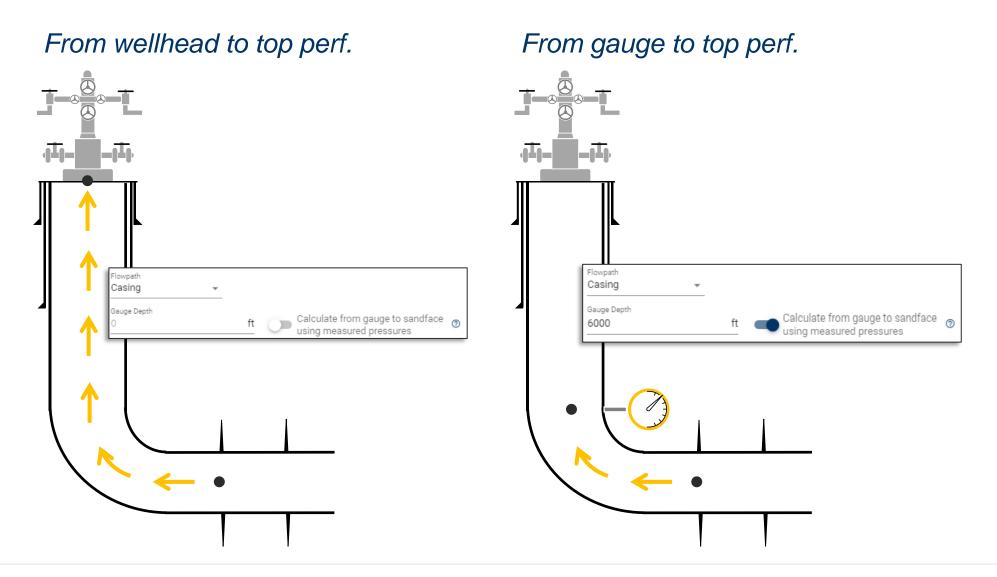
Summary

Recommendation 1: Compare BHP calcs to gauge data when available. Use most accurate correlation for wells in the same basin.

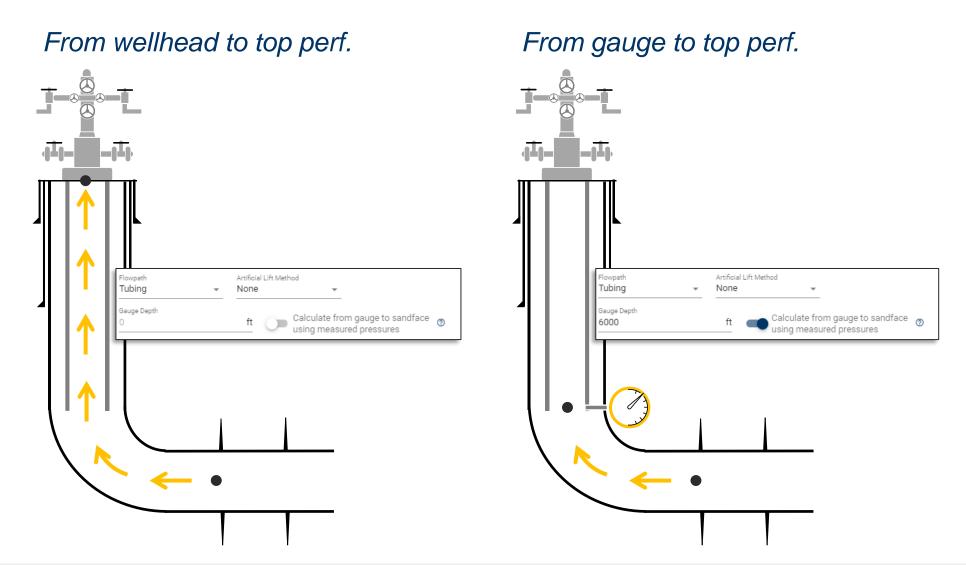
Recommendation 2: if no gauge data is available, use Woldesemayat & Ghajar.

Further work: Goal is to expand on this study over the next year (include more wells).

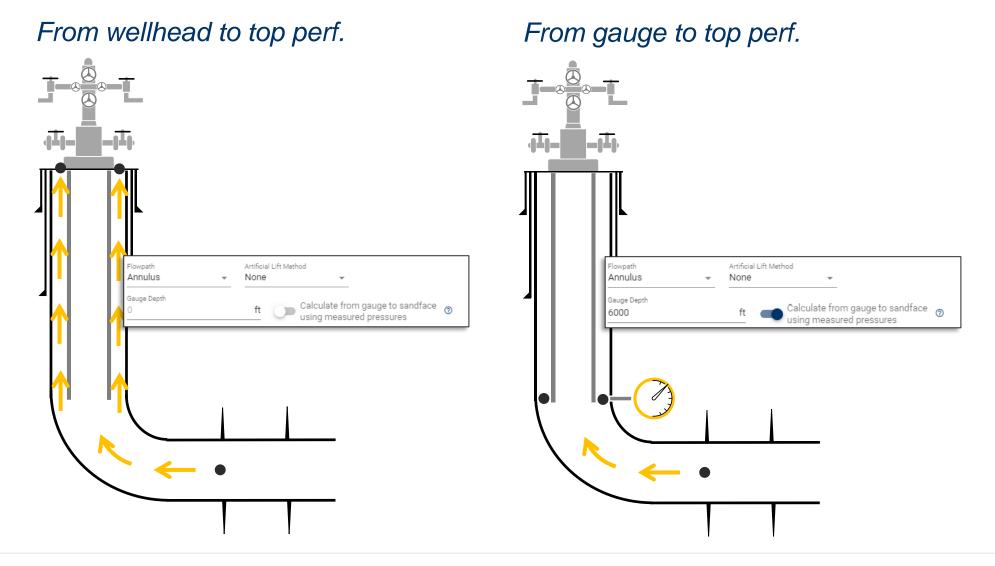
Source: URTeC 4045619



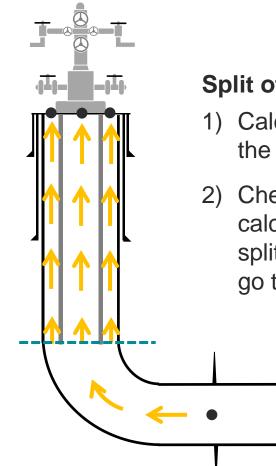
Flow Paths—Overview


Several flow paths may be selected in whitson*

o Casing	Well Data		0 🌡 🏟 🗙
○ Tubing	Well Deviation Survey		2 Well Data
o Annulus	 Configuration 1 Flowpath: Tubing 	Wellbore Configuration 1 (Initial)	
$_{\odot}$ Tubing and Annulus	Artificial Lift: None	Casing Data Pipe No. Top MD Bottom MD ID	- 1 + Roughness
○ Measured BHP		(#) (ft) (ft) (in) 1 0 15493 4.778	(in) 0.0006
○ Unknown		Tubing Data	(-) 1 (+)
		Pipe No. Bottom MD ID OD (#) (ft) (in) (in) 1 7000 2.441 2.875	Roughness (in) 0.0006 55
		Flowpath Artificial Lift Method Tubing None -	
		Casing ft Calculate from using measured	gauge to sandface 🛛 Ø
		Tubing Annulus	
		Tubing and Annulus	SAVE
		Measured Gauge Pressures	

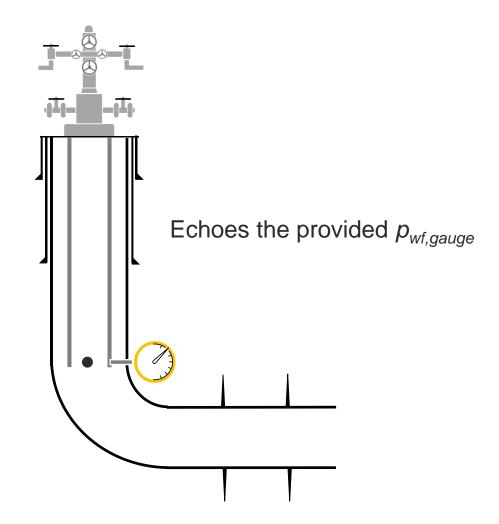

Flow Paths—Casing

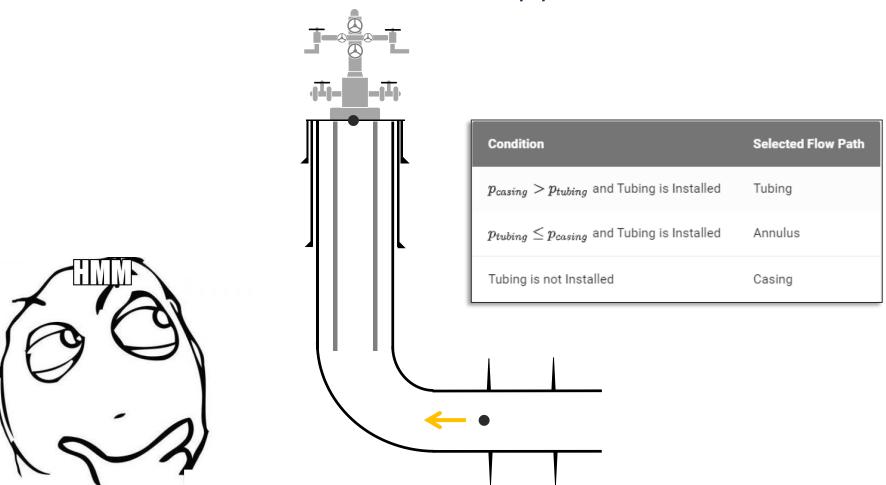
Flow Paths—Tubing


Flow Paths—Annulus

Copyright © Whitson AS

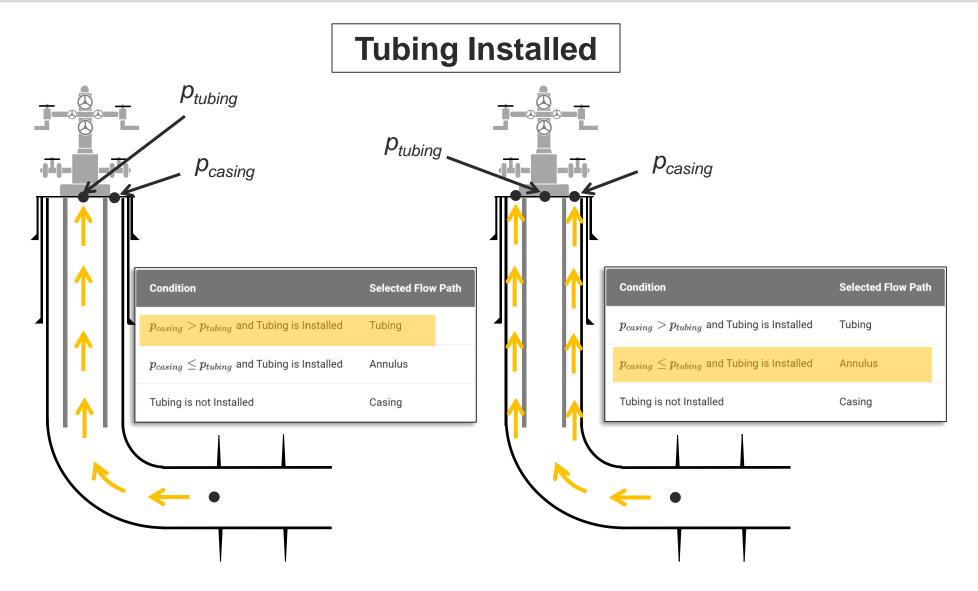
Flow Path—Tubing and Annulus (Parallel)

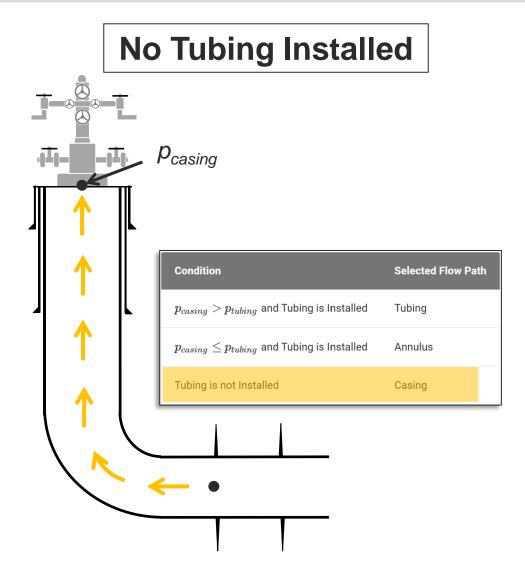

From wellhead to top perf.


Split of flow is calculated at EOT

- 1) Calculate the pressure profile down the annulus and tubing
- 2) Check if pressure at EOT from each calculation is equal for a specified split of flow. If not, change split, and go to 1)

Flow Paths—Measured BHP

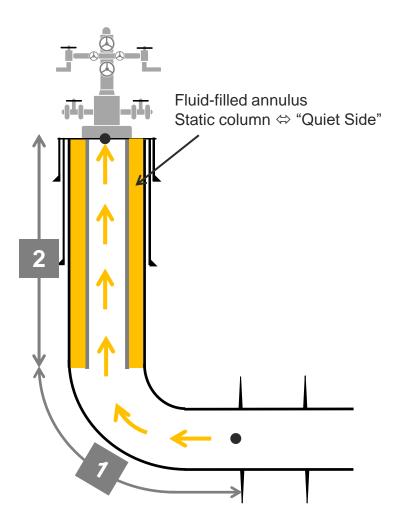

Flow Path—Unknown


From wellhead to top perf.

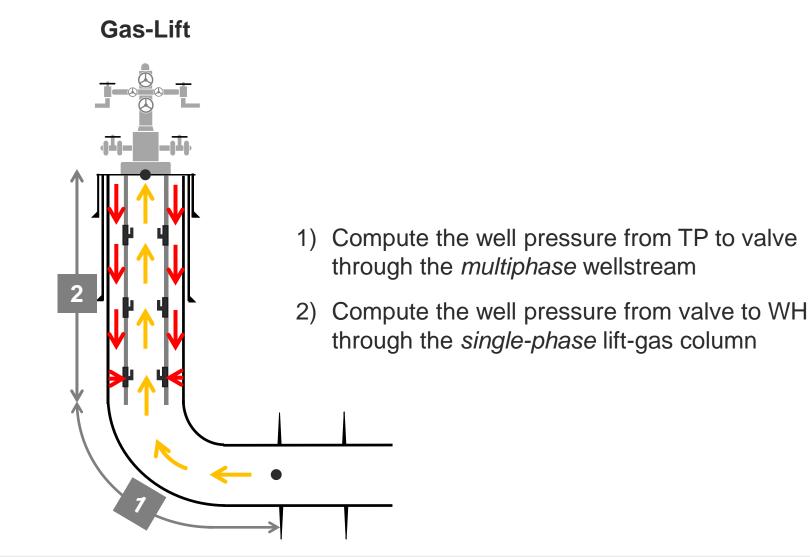
Copyright © Whitson AS

Flow Path—Unknown

Flow Path—Unknown



Flowing vs Quiet Side Calculations


BHP Calculations Using the "Quiet Side"

Quiet Side:

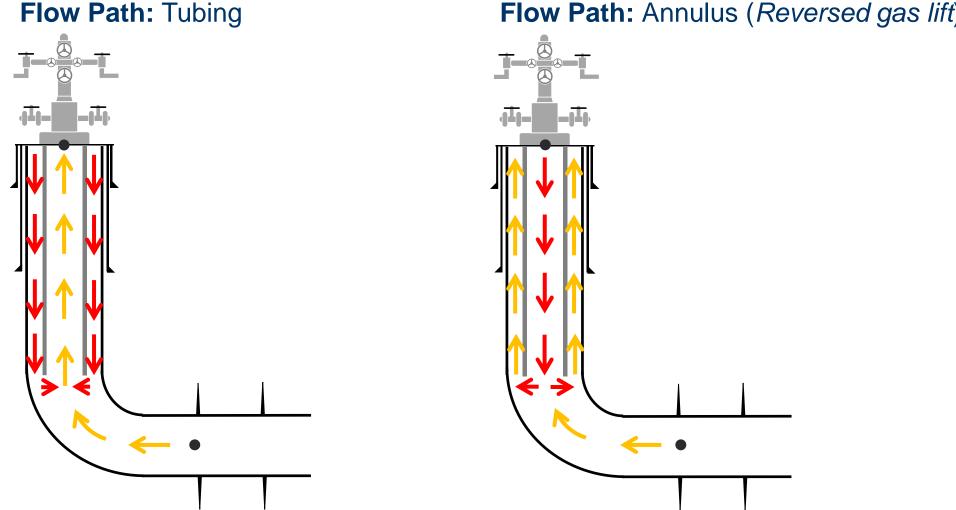
- Annulus assumed filled with a single-phase fluid with communication to the flowing side at end of tubing (EOT), i.e. no isolation packer.
- Compute BHP by splitting the well into two segments
 - Multiphase flow from top perforation (TP) to EOT
 - 2. Static fluid column from EOT to WH

BHP Calculations Using the "Quiet Side"

Artificial Lift Methods

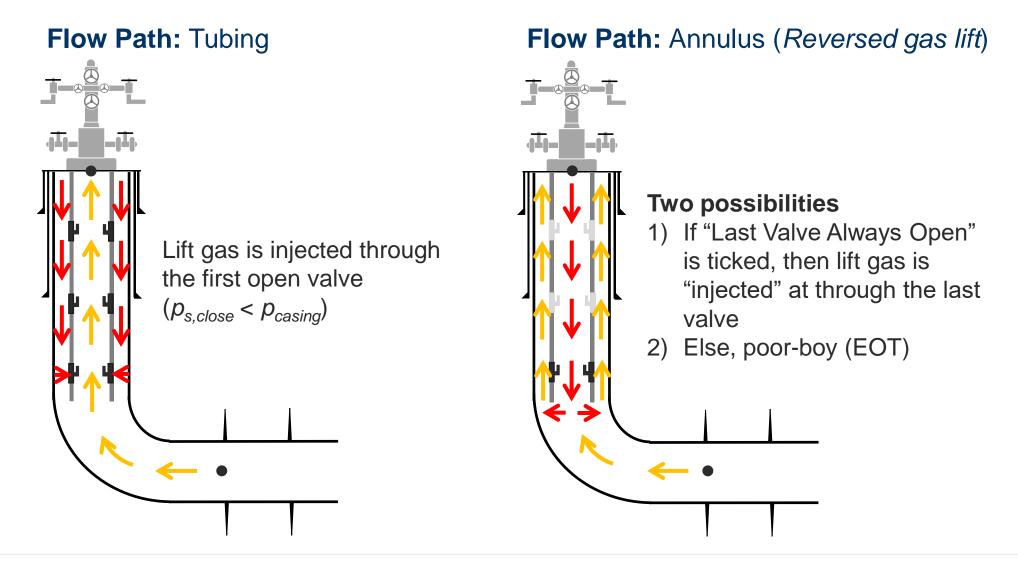
Well Data							Qi	٥	8	۵	×
1 Well Deviation Survey —									2	Well [)ata
 Configuration 1 Flowpath: Tubing 	Wellbore Configuration 1 (Initial)										
Artificial Lift: Gas Lift	Casing Data					<u> </u>					
		Pipe No. (#)	(#) (ft)		Bottom MD (ft) 20184	ID Roughne (in) (in) 4.67 0.0006		n)	50		
	Tubing Data					<u> </u>					
	Pipe No. (#)		Bottom N (ft) 13128	(in)		0D (in) 2.375		Roughness (in) 0.0006			
	Flowpath Tubing		Artificial		ial Lift Method Lift	Gas Lift Configuration Poor-Boy			•		
		pute Through ving Side	*	- None							
	Gaug O		Gas Lift		om gauge to sandface ured pressures						
				ES	8P	neu pressures					
				Rod Pump							
			_	Plu	unger Lift					S	AVE

Artificial Lift—Gas Lift

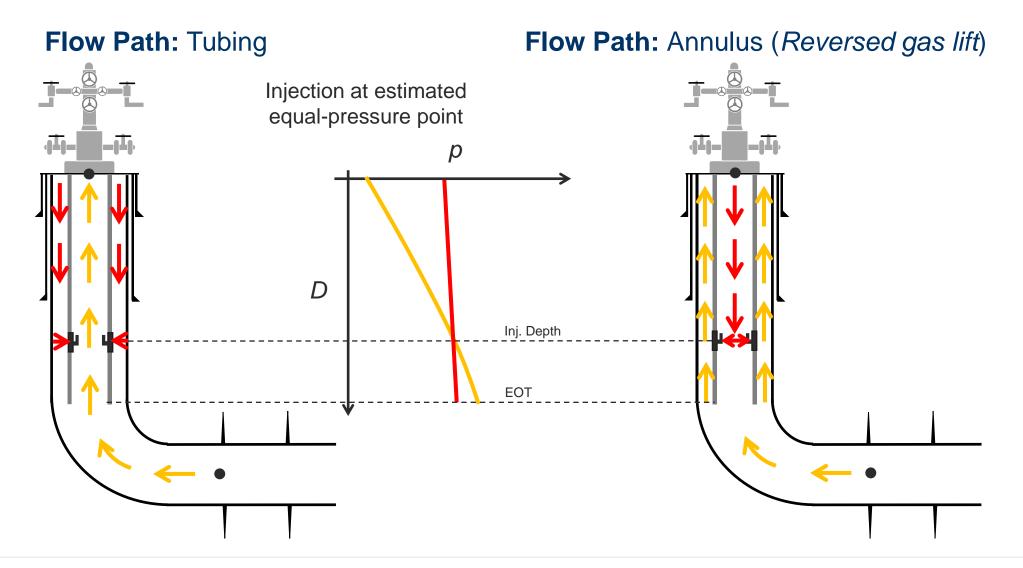

• Three types of gas-lift configurations:

○Poor-Boy—Injection at EOT

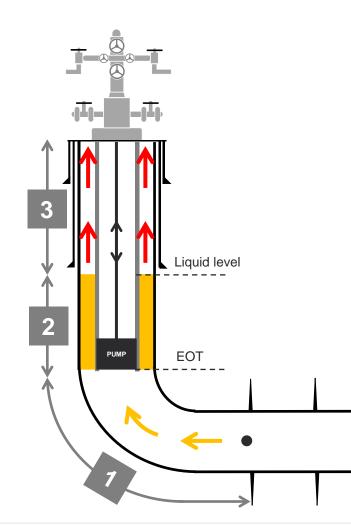
 Valves—Injection through the first open valve based on the surface pressure


 Automatic—Injection at equal-pressure point in the tubing and annulus

Artificial Lift—Gas Lift | Poor-Boy



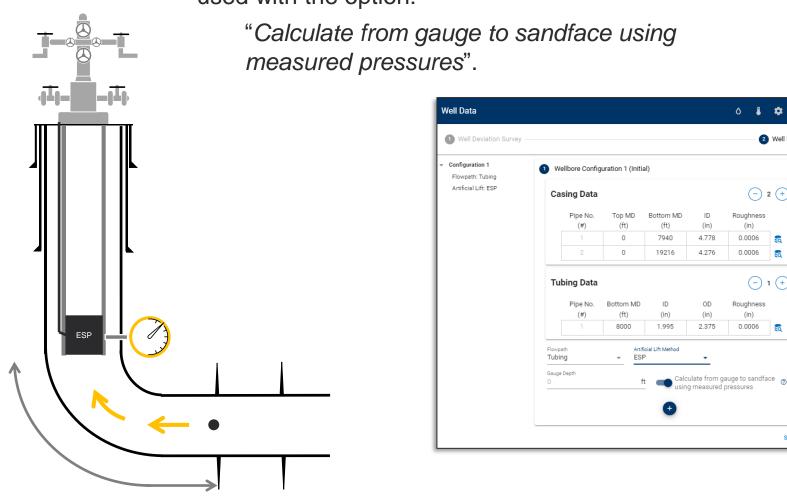
Flow Path: Annulus (*Reversed gas lift*)


Artificial Lift—Gas Lift | Valves

Artificial Lift—Gas Lift | Automatic

Artificial Lift—Rod Pump

Three Well Segments1) Top Perforation to EOT:Regular multiphase pipe flow


2) EOT to Liquid Level in Annulus: Stagnant column of liquid and gas

3) Liquid Level in Annulus to Wellhead Single-phase gas flow

Artificial Lift—ESP

The measured pressures from the ESP gauge can be used with the option:

"Calculate from gauge to sandface using measured pressures".

whitson

0 🌡 🏟 🗙

(-) 2 (+)

50

50

50

SAVE

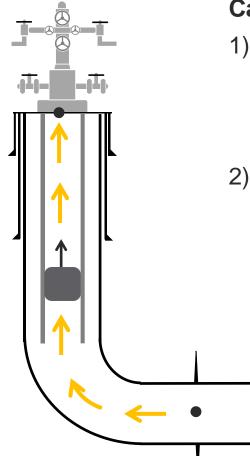
(-) 1 (+)

Roughness

(in)

0.0006

0.0006

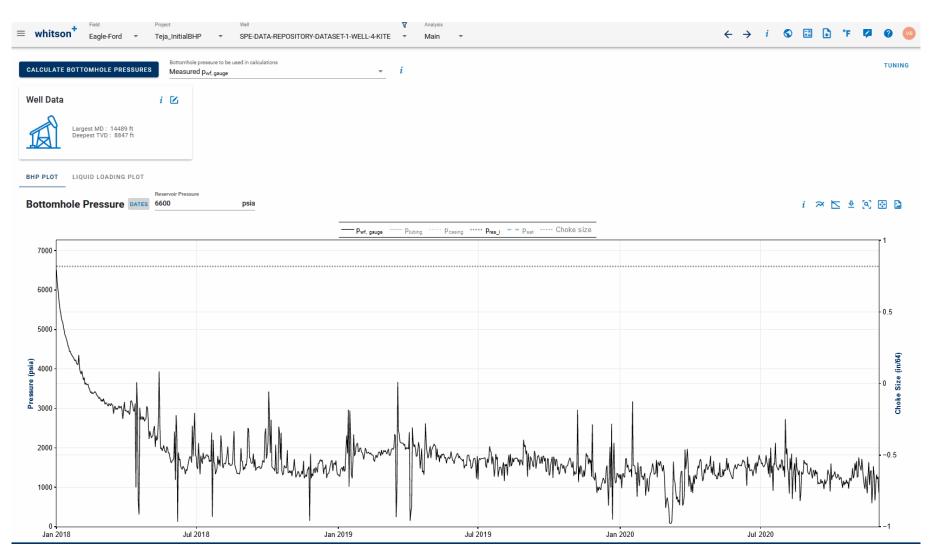

Roughness

(in)

0.0006

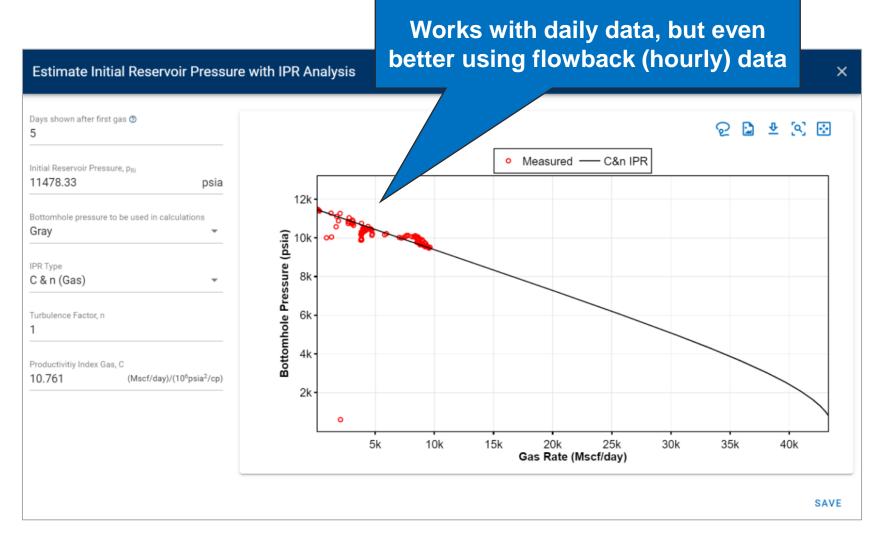
2 Well Data

Artificial Lift—Plunger Lift



Can be modeled in two ways:

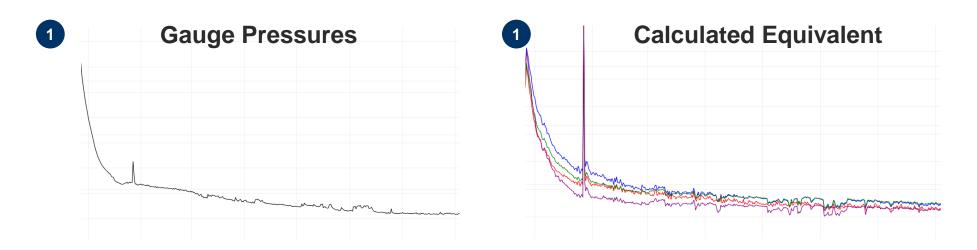
- If the liquid level is measured, it can be modeled as a rod pump configuration provided the liquid level corresponds to times when the well is producing.
- Model as if plunger lift is not installed by using average rates from the production period. Change the OGR of the well to capture the effect of less liquid in the tubing.

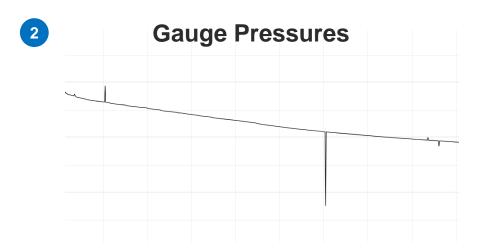

Estimate initial reservoir pressure with IPR

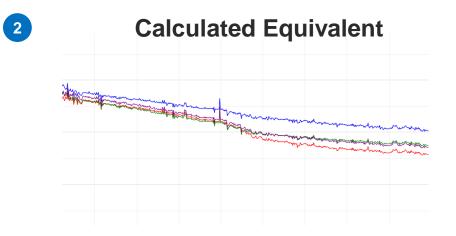
Estimate Initial Reservoir Pressure from IPR

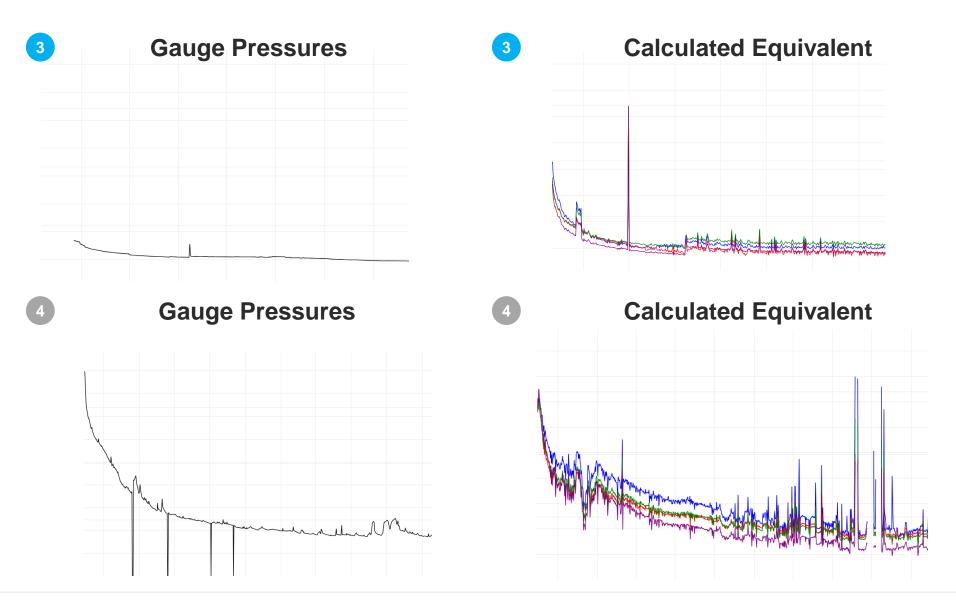
Case study can be found here: https://youtu.be/PkR-AI0DPj4?feature=shared&t=6298

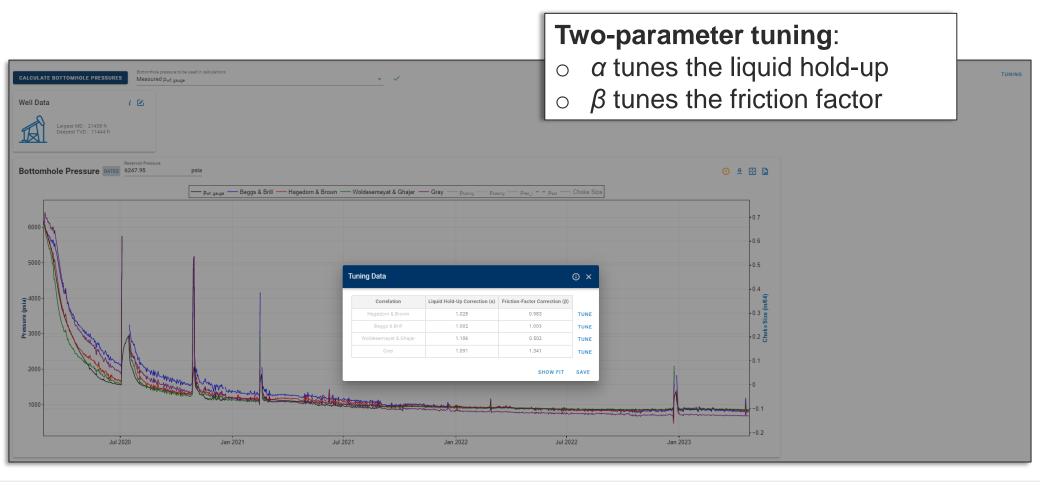
Estimate Initial Reservoir Pressure from IPR

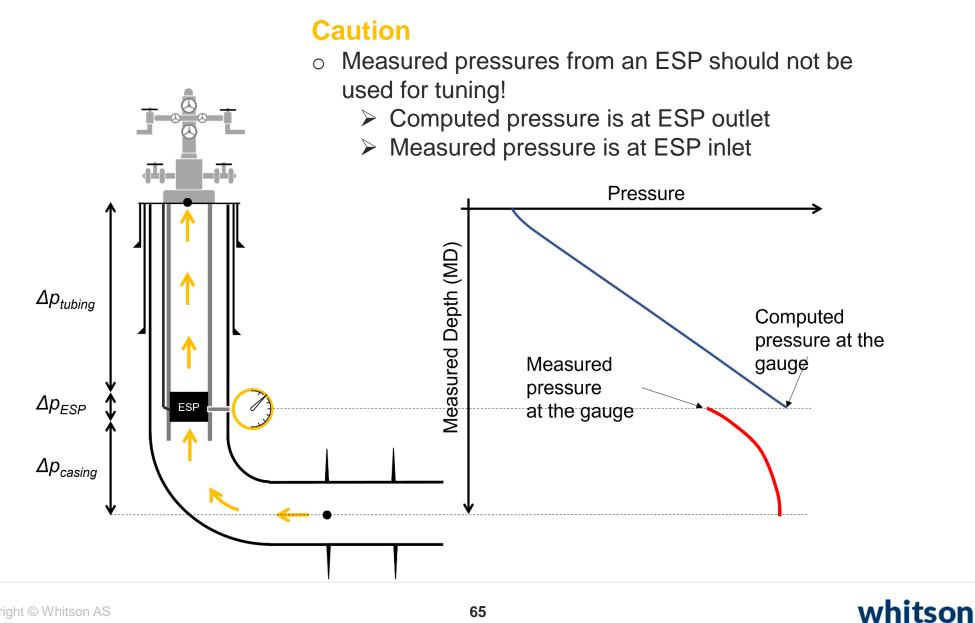

Case study can be found here: https://youtu.be/PkR-AI0DPj4?feature=shared&t=6298




BHP Smoothing


Examples: Gauge Pressures are Smooth!


Examples: Gauge Pressures are Smooth!

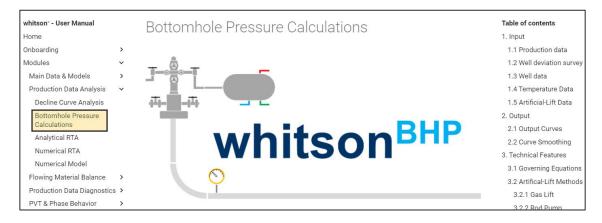


Tuning of Correlations

• The multiphase flow correlations can be tuned against measured pressures

Tuning of Correlations—ESP

Wiki and Manual


$_{\odot}$ Pipe-flow theory and correlations

o https://wiki.whitson.com/pipeflow/well_pressure_calculations/

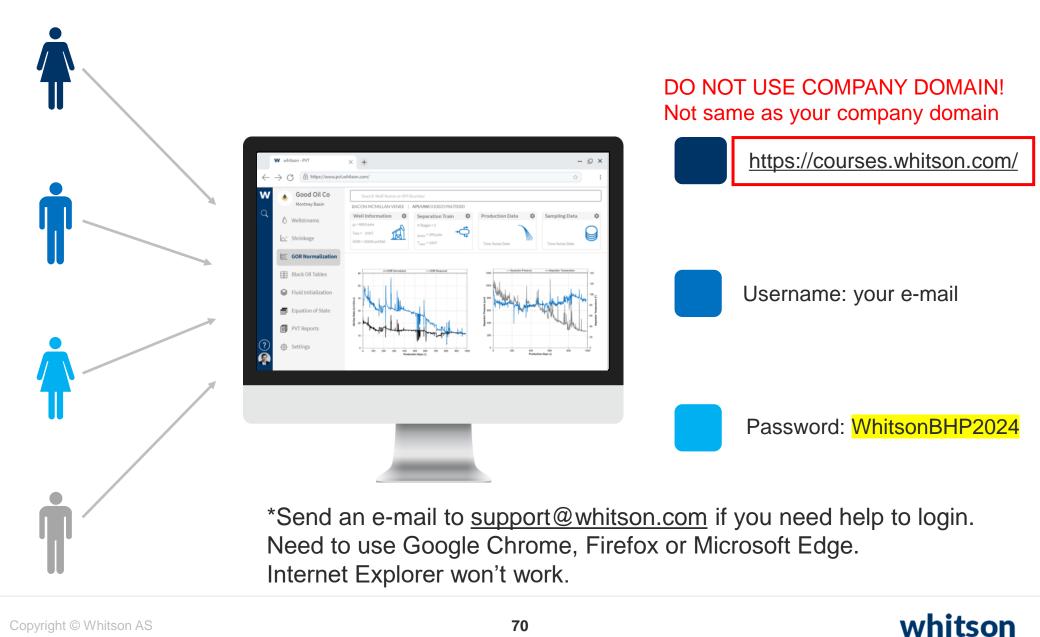
whitson wiki		Pipe-Flow Calculations	Table of contents	
Home		riperiew odlediations	Base Two-Phase Flow	
Glossary			Expressions	
Phase Behavior	>	Pipe flow calculations involve estimating the pressure and temperature along the pipe using	Local Rates	
Equation of States (EOS)	>	correlations to describe the fluid- and flow properties. For petroleum engineering applications,	Fluid Fractions	
Black-Oil PVT	>	particularily calculations in the wellbore, it is common to use a so-called drift-flux model to	Hydraulic Properties	
Pipe Flow	~	express the fluid properties in the pressure gradient. The drift-flux model is a type of	Fluid Properties	
Well Pressure Calculations	5	homogenous model where the phases are lumped together such that single-phase flow	Friction Factor	
Correlations	>	equations can be applied, but where it is accounted for gas generally flowing faster than liquid, a	Pressure Profile	
Contribute		concept referred to as slip. This concept was first introduced by Zuber and Findlay (1965) ¹ . Drift-	Gravity Pressure Gradien	
		flux type models are often used because of the simplicity that they offer. The alternative is to	Friction Pressure Gradier	
About		solve the momentum- and energy equations for each phase separately which is commonly	Appalaration Brassura Cr	

BHP calculations in whitson*

<u>https://manual.whitson.com/modules/well-performance/bottomhole-pressure-</u>calculations/

Exercise – Agenda

1. Key Features & Functionality:

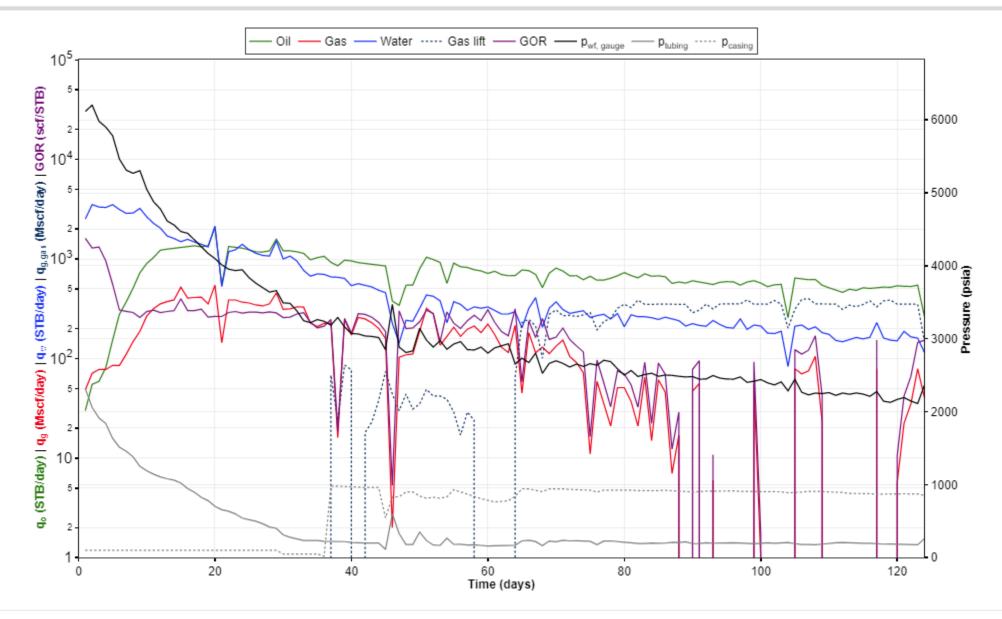

a. BHP calculation for well on gas lift

- Poorboy
- Valves
- Automatic (flowing & quiet side)
- b. Custom BHP / BHP smoothing
- c. BHP calculation setting
- d. BHP calculation for well with rod pump
- e. BHP calculation for well on ESP
- f. BHP calculation for dry gas well / Liquid loading

2. BHP tuning exercise

3. Advanced: BHP using Mass Upload Sheet

Access to whitson⁺



Copyright © Whitson AS

Exercise 1.a

BHP Calculations well on gas lift (Poorboy)

Gas Lift – Poorboy Configuration

Gas Lift – Poorboy Configuration

Copyright © Whitson AS

Well Deviation Survey

Well Data				Qi	٥	8	۵	×
1 Well Deviation Survey						2	Well I	Data
	Perforated Interval ③							
	Top Perforation MD 7600	ft	Bottom Perforation MD 18400	ft				
	Top Perforation TVD 7515	ft	Bottom Perforation TVD 7598.45	ft				
	Deviation Survey (Input entire survey, table exp	ban	ds with input)	LEAR				
			True Vertical Depth (T ^r (ft)	VD)				
	150		150					
	7600		7515					
	18600		7600					
							S	AVE

Top & Bottom Perforation Depths

Vell Data				٥:	٥	8	٠	×
1 Well Deviation Surve	у					2) Well (Data
	Perforated Interval 💿							
	Top Perforation MD 7600	ft	Bottom Perforation MD 18400	ft				
	Top Perforation TVD	220	Bottom Perforation TVD	ft				
	7515	ft	7598.45					
				LEAR				
	Deviation Survey			LEAR				
	Deviation Survey (Input entire survey, table ex Measured Depth (MD)		ds with input) 🗅 C True Vertical Depth (T	LEAR				
	Deviation Survey (Input entire survey, table ex Measured Depth (MD) (ft)		ds with input) True Vertical Depth (T (ft)	LEAR				
	Deviation Survey (Input entire survey, table exp Measured Depth (MD) (ft)		ds with input) True Vertical Depth (T (ft) 0	LEAR				

Wellbore Configuration – Casing & Tubing Data

Well Data				Qi	۵ 🌡	۵	×
Well Deviation Survey —					2	Well D	ata
 Configuration 1 Flowpath: Unknown 	1 Wellbore Configu	uration 1 (Initia	al)				
Artificial Lift: None	Casing Data				-	2 (+)	
	Pipe No. (#)	Top MD (ft)	Bottom MD (ft)	ID (in)	Roughness (in)		
		0	7549	4.778	0.0006	5	
	2	0	18598	4.276	0.0006	50	
	Tubing Data				-	1 (+)	
	Pipe No.	Bottom MD	ID	OD	Roughness		
	(#)	(ft) 7325	(in) 1.995	(in) 2.375	(in)	50	
	Flowpath Unknown Compute Through Flowing Side Gauge Depth (MD)	Artifi Nor	cial Lift Method ne		auge to sandfa		
						SA	VE

Using the Tubing / Casing Catalogue

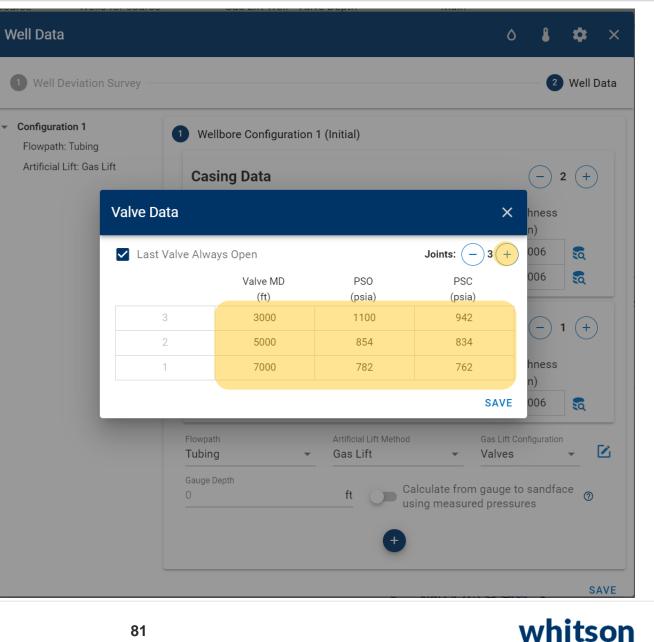
	atalogua					rtificial Li ×
	atalogue					^
OD (in)	Weight (lb/ft)	ID (in)	OD (cm)	Weight (kg/m)	ID (cm)	
1.9	5.15	1.3	4.83	7.664	3.306	*
2.063	3.25	1.751	5.24	4.837	4.448	*
2.063	4.5	1.613	5.24	6.697	4.096	*
2.375	4	2.041	6.03	5.953	5.182	*
2.375	4.6	1.995	6.03	6.846	5.064	*
2.375	5.8	1.867	6.03	8.631	4.74	*
2.375	6.6	1.785	6.03	9.822	4.532	*
2.375	7.35	1.703	6.03	10.938	4.324	*
2.875	6.4	2.441	7.3	9.524	6.198	*
2.875	7.8	2.323	7.3	11.608	5.898	*
2.875	8.6	2.259	7.3	12.798	5.736	*
2.875	9.35	2.195	7.3	13.914	5.572	*
2.875	10.5	2.091	7.3	15.626	5.308	*
2.875	11.5	1.995	7.3	17.114	5.064	*
3.5	7.7	3.068	8.89	11.459	7.792	*
3.5	9.2	2.992	8.89	13.691	7.6	*
3.5	10.2	2.922	8.89	15.179	7.422	· · · · · · · · · · · · · · · · · · ·
3.5	12.7	2.75	8.89	18.9	6.986	* -
•						•

Wellbore Configuration

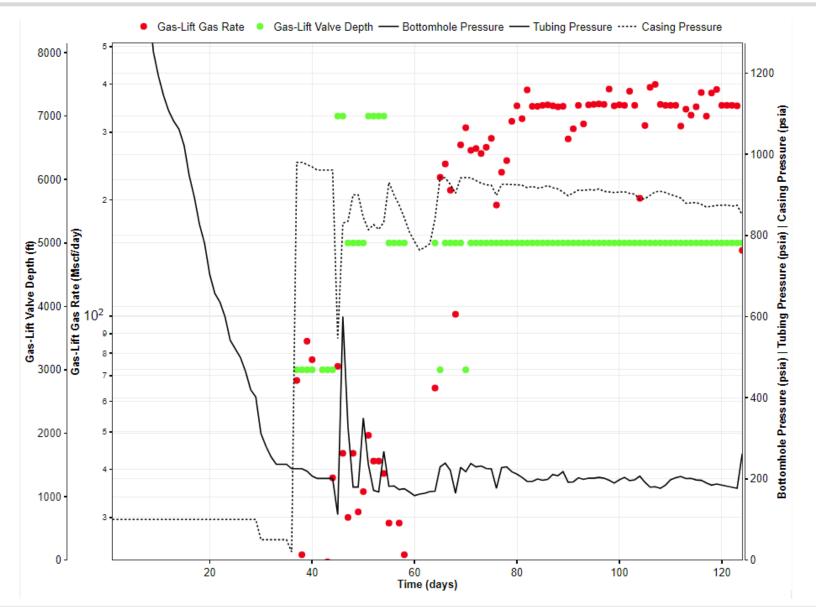
onfiguration 1 Flowpath: Tubing	1 Wellbore	Configu	ration 1 (Initia	al)			
Artificial Lift: Gas Lift	Casing	Data				<u> </u>	+
		e No. #)	Top MD (ft)	Bottom MD (ft)	ID (in)	Roughness (in)	
		1	0	7549	4.778	0.0006	20
		2	0	18598	4.276	0.0006	50
	(e No. #) 1	Bottom MD (ft) 7325	ID (in) 1.995	OD (in) 2.375	Roughness (in) 0.0006	50
							**
	Flowpath Tubing			cial Lift Method Lift		s Lift Configuration D OR-BOY	
	Compute Throu Flowing Sid		Ŧ				
	Gauge Dep	th (MD)	f			auge to sandfac pressures	^{ce} ଉ

Exercise 1.a

BHP Calculations well on gas lift (Valves)

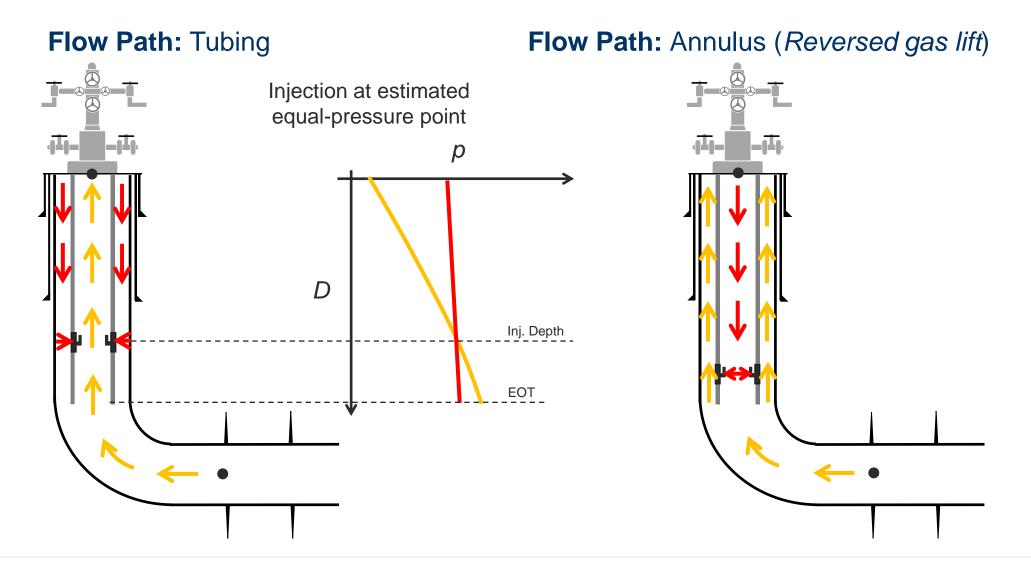

Gas Lift – Single Valve Depth

Configuration 1 Flowpath: Tubing	1 Wellbore Configu	Wellbore Configuration 1 (Initial)							
Artificial Lift: Gas Lift	Casing Data				-	2 (+)			
	Pipe No. (#)	Top MD (ft)	Bottom MD (ft)	ID (in)	Roughness (in)				
Valve	Data				× 006	10 10			
		V	/alve MD (ft)	Joints: -	1 (+)	+			
	1		7000		n) SAVE	S			
	Flowpath Tubing		ficial Lift Method S Lift		as Lift Configuration alves	_ C			
	Compute Through Flowing Side	*							
	Gauge Depth (MD)		ft 💭 Cal	culate from g ng measured	auge to sandfa pressures	^{ce} Ø			


Gas Lift – Multiple Valves vs Depth

Flow Path: Tubing

Lift gas is injected through the first open valve $(p_{s.close} < p_{casing})$


Gas Lift – Multiple Valves vs Depth

Exercise 1.a

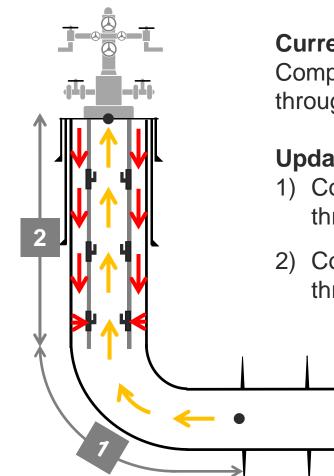
BHP Calculations well on gas lift (Automatic)


Artificial Lift—Gas Lift | Automatic

Gas Lift – Automatic

Well Data				India	۵ 🌡	\$ ×
1 Well Deviation Survey —					2	Well Data
 Configuration 1 Flowpath: Tubing 	1 Wellbore Config	uration 1 (Initia	al)			
Artificial Lift: Gas Lift	Casing Data				<u> </u>	2 (+)
	Pipe No. (#)	Top MD (ft)	Bottom MD (ft)	ID (in)	Roughness (in)	
	1	0	7549	4.778	0.0006	5
	2	0	18598	4.276	0.0006	5
	Tubing Data				- 1	+
	Pipe No. (#)	Bottom MD (ft)	ID (in)	OD (in)	Roughness (in)	
	(#)	7325	1.995	2.375	0.0006	5
	Flowpath Tubing		cial Lift Method S Lift		as Lift Configuration utomatic	•
	Gauge Depth O	f		ulate from ga g measured p	auge to sandfac pressures	^{ce} Ø
			•			

Gas Lift – Multiple Valves vs Depth



Exercise 1.a

BHP Calculations well on gas lift (Quiet / Silent Side)

BHP Calculations Using the "Quiet Side"

Current:

Compute the well pressure from TP to WH through the multiphase wellstream

Update:

- 1) Compute the well pressure from TP to valve through the *multiphase* wellstream
- 2) Compute the well pressure from valve to WH through the single-phase lift-gas column

Gas Lift – Automatic

Well Data				Qi	٥	8 🌣	×
1 Well Deviation Survey —						2 Wel	l Data
Configuration 1 Flowpath: Tubing	1 Wellbore Configu	uration 1 (Initi	al)				
Artificial Lift: Gas Lift	Casing Data				(2 (+	9
	Pipe No. (#)	Top MD (ft)	Bottom MD (ft)	ID (in)	Roughr (in)		
	1	0	7549	4.778	0.000)6 👩	
	2	0	18598	4.276	0.000)6	
	Tubing Data				(-) 1 (+	9
	Pipe No. (#)	Bottom MD (ft)	ID (in)	OD (in)	Roughr (in)		
	1	7325	1.995	2.375	0.000	06 🛛 🟹	
	Flowpath Tubing		icial Lift Method s Lift		s Lift Configu Itomatic	ration	•
	Compute Through Static (Quiet) Side		npute Static Down To s-Lift Valve	•			
	Gauge Depth (MD)			late from ga measured p)
			•				

Exercise 1.b

Custom p_{wf} p_{wf} Smoothing

Custom p_{wf} / p_{wf} Smoothing

Exercise 1.c

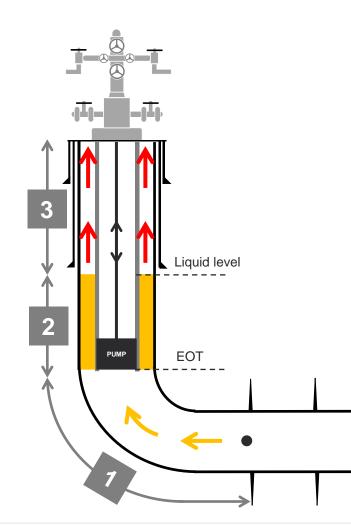
BHP Calculation Settings

BHP Calculation Settings

Well Data		0 8 🜼 ×
1 Well Deviation Survey –		2 Well Data
 Configuration 1 Flowpath: Tubing 	Wellbore Configuration 1 (Initial)	
Artificial Lift: ESP	Casing Data	─ 2 +
	Pipe No Top MD Bottom MD ID Calculation Settings ×	Roughness (in) 0.0006
	Artificial-Lift Settings ③	0.0006
	Gas Lift: Compute when Gas-Lift Rate is 0 Rod Pump: Compute when Liquid Level is 0	- 1 +
	ESP: Compute when Gauge Pressure is 0	Roughness (in) 0.0006
	Flowpath Artificial Lift Method Tubing	
	Gauge Depth 8332 ft Calculate from gr using measured	auge to sandface 🏾 🔊
	•	
		SAVE

Exercise 1.d

BHP Calculations well with rod pump


Well Data – Add New Configuration

Well Data	are source to be used in calculations			٥	8	\$	×
1 Well Deviation Survey					2	Well [)ata
 Configuration 1 Flowpath: Casing 	1 Wellbore Configuration	1 (Initial)					
Artificial Lift: None	Casing Data			(-) 1	+	
3	(#) (MD Bottom MD (ft) (ft) 0 13915	ID (in) 4	Rough (in 0.00)	50	
	Tubing Data			(-) () (+	
	Flowpath Casing						
	Gauge Depth O		culate from g g measured			ce Ø	
		•					
						S	AVE

Well Data – Select Rod Pump AL Method

Well Data					۵ 🌡	\$	×
1 Well Deviation Survey						2 Well	Data
 Configuration 1 Flowpath: Casing Artificial Lift: None Configuration 2 Flowpath: Tubing Artificial Lift: Rod Pump 	Wellbore Config Wellbore Config Use From Date (mr 03/05/2015 Casing Data Pipe No.	uration 2	al) Bottom MD	ID	Roughnes	1 (+ s	:
	(#) 1	(ft) 0	(ft) 13915	(in) 4	(in) 0.0006	5	
	Tubing Data				-	1 +)
	Pipe No. (#) 1	Bottom MD (ft) 7022	ID (in) 2.441	OD (in) 2.875	Roughnes (in) 0.0006	s	
	Flowpath Tubing Gauge Depth O	• Ro		culate from g g measured	auge to sand	face 📀	

Artificial Lift—Rod Pump

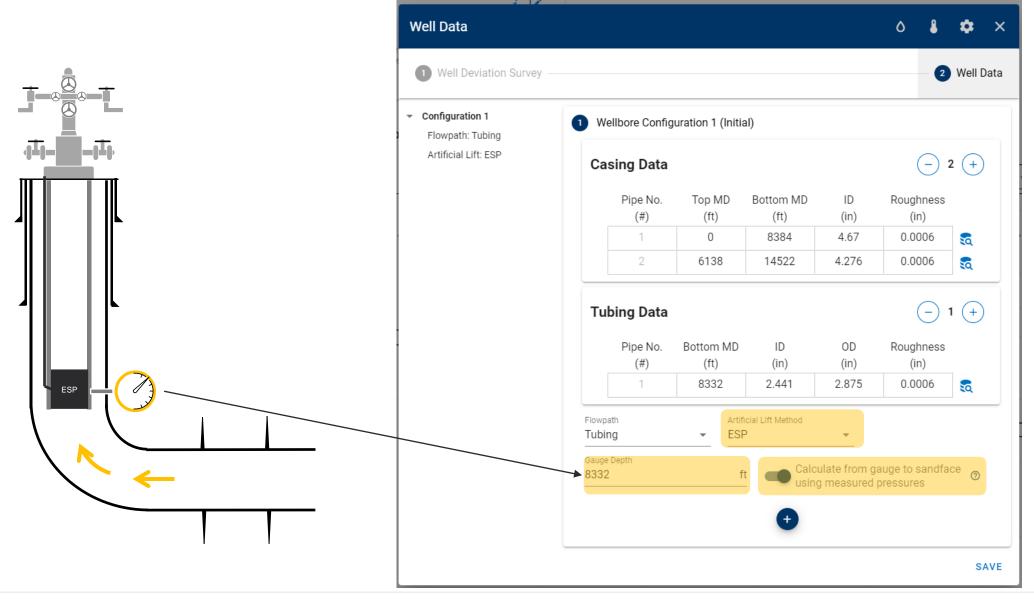
Three Well Segments1) Top Perforation to EOT:Regular multiphase pipe flow

2) EOT to Liquid Level in Annulus: Stagnant column of liquid and gas

3) Liquid Level in Annulus to Wellhead Single-phase gas flow

Quiz !

Quiz !


BHP Calculation Settings

Well Data		0 8 🜼 ×
1 Well Deviation Survey –		2 Well Data
 Configuration 1 Flowpath: Tubing 	Wellbore Configuration 1 (Initial)	
Artificial Lift: ESP	Casing Data	─ 2 +
	Pipe No Top MD Bottom MD ID Calculation Settings ×	Roughness (in) 0.0006
	Artificial-Lift Settings ③	0.0006
	Gas Lift: Compute when Gas-Lift Rate is 0 Rod Pump: Compute when Liquid Level is 0	- 1 +
	ESP: Compute when Gauge Pressure is 0	Roughness (in) 0.0006
	Flowpath Artificial Lift Method Tubing	
	Gauge Depth 8332 ft Calculate from gr using measured	auge to sandface 🏾 🔊
	•	
		SAVE

Exercise 1.e

BHP Calculations well on ESP

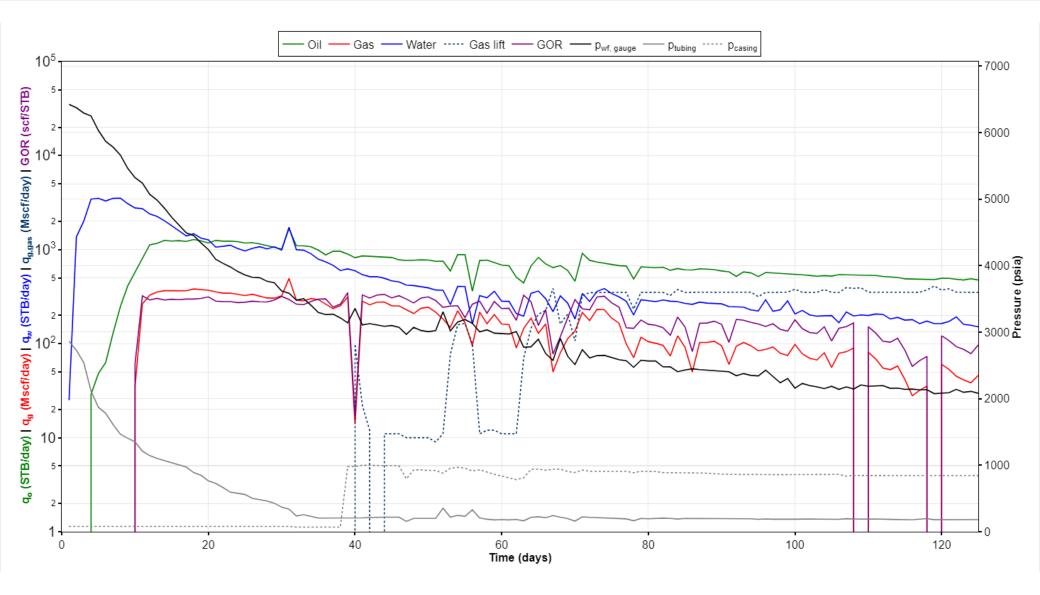
BHP Calculation – Well on ESP

Exercise 1.f

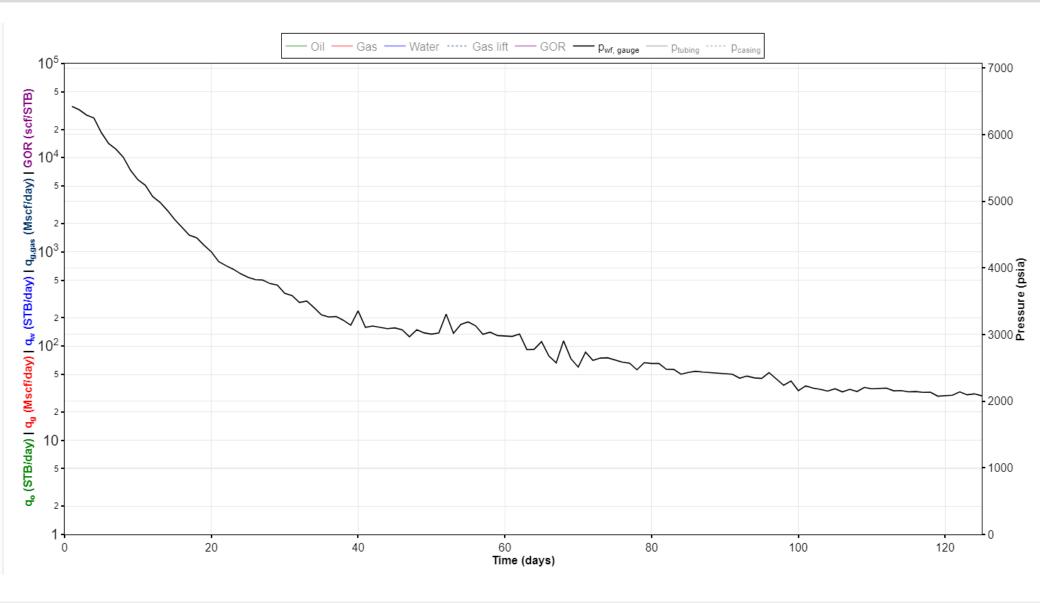
BHP Calculations on a Dry Gas Well (Liquid Loading)

BHP Calculation – Well on ESP

whitson⁺ Nodal Analysis

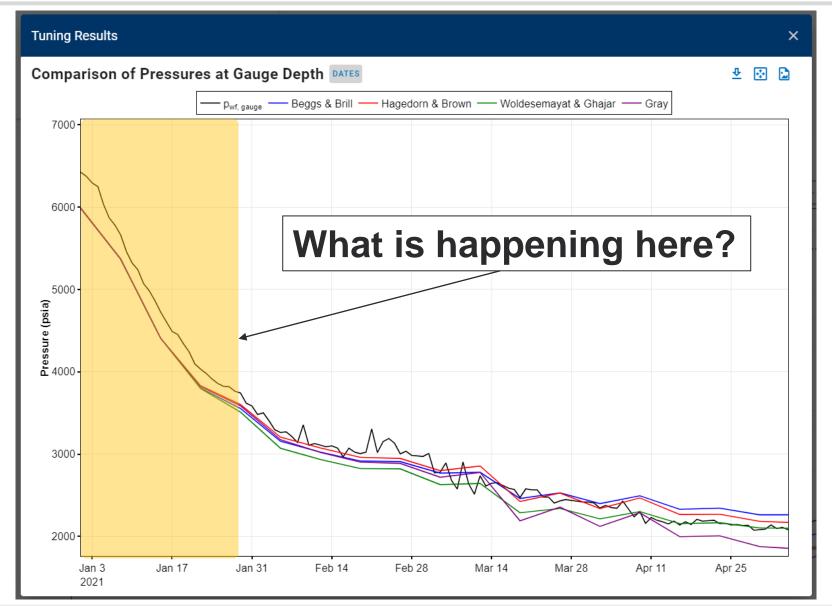

whitson

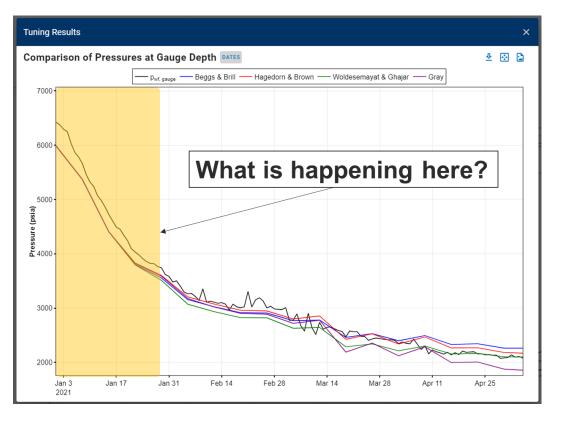
Graham Helfrick 2 October 2024 1/2 Day Course (Included in your subscription!)


Exercise 2

BHP Correlation Tuning to Measured Gauge Data

BHP Tuning – Measured Gauge Pressures


BHP Tuning – Measured Gauge Pressures


BHP Tuning – Gauge Depth

Well Data						۵ 🌡	\$ ×
1 Well Deviation Survey —						2	Well Data
 Configuration 1 Flowpath: Tubing 	1 w	ellbore Config	juration 1 (Initi	al)			
Artificial Lift: Gas Lift	Ca	sing Data					2 (+)
		Pipe No. (#)	Top MD (ft)	Bottom MD (ft)	ID (in)	Roughness (in)	
		1	0	7499	4.778	0.0006	5
		2	10541	18040	4.276	0.0006	5
	Tu	bing Data				-	1 (+)
		Pipe No.	Bottom MD	ID	OD	Roughness	
		(#)	(ft)	(in)	(in)	(in)	_
		1	7595	1.995	2.375	0.0006	5
	Flowp Tubi			icial Lift Method s Lift		as Lift Configuratior alves	- 🖸
	Gauge 7595	e Depth 5	f		ulate from ga g measured j	auge to sandfa pressures	^{ce} Ø
				•			
							SAVE

BHP Tuning – 1st Iteration

BHP Tuning – 1st Iteration

This is the region where the wellbore is still filled with **single phase fluid**.

For this **single phase** region, tuning the **multiphase correlations** doesn't make much sense.

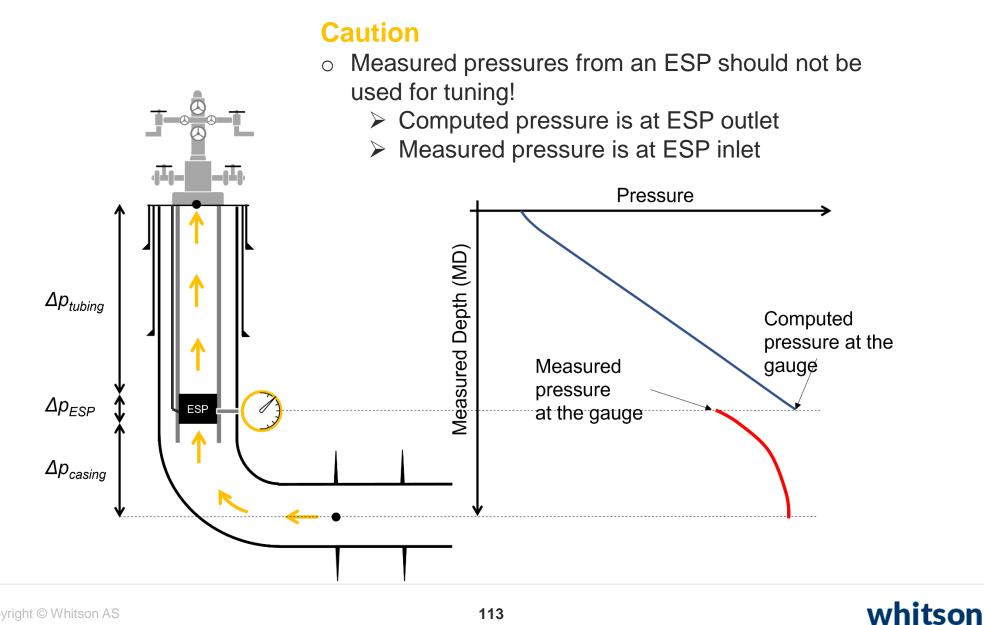
Instead we need to adjust the fluid densities which is done through:

- PVT (for oil & gas densities)
- water salinity (for water density)

Always start with salinity if you have a single phase region.

BHP Tuning – 2nd Iteration (Salinity)

Adjust salinity iteratively until the single phase region gives a better match.


For this exercise, we can focus on the **Hagedorn & Brown** correlation only.

As a reference

- Sea water salinity: 10k 35k ppm
- Brine salinity: 35k 250k ppm

Vell Data							Qi	٥	8	\$	×
1 Well Deviation Survey									- 2) Well [Data
	Perfora	ted Interval 💿									
	Top Perfo 7828	ration MD		Bottom Pe 17825	rforation 1	ИD	ft				
	Top Perfo 7485.69	ration TVD	ft	Bottom Pe 7212.89			ft				
	Deviati	Water PVT	& Visc	osity	6	×	LEAR				
	(Input e Mea	Water Salinity				ppm	VD)				
		Density at p _{ac} , T _{ac} 62.3718	lb/ft³	0.2736		ср	Î				
						AVE					
		340			340						
		529			528.9	9					
		717			716.9	7					
		812			811.9	6					
		907			906.9						
		1001			1000.9						
		1095			1094.9	93	-				

REMINDER: Tuning of Correlations with ESP

Exercise 3

BHP using Mass Upload Sheet

(Multiple Wells)

Mass Upload – Production Data

	А	В	С	D	E	К	L	М	Ν
1	Well	Time		Stock Tank Rates			Measured Pres	sures, Temperatures ar	nd Gas-Lift Rates
2	Name	Date	q _o	q _g	qw	p _{wf}	Ptubing	P _{casing}	q _{g,gas lift}
3	-	-	STB/d	Mscf/d	STB/d	psia	psia	psia	Mscf/d
4	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-01 00:00	504.39	145.0	718	5050	15	2065	
5	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-02 00:00	564.76	186.0	922	5010	15	1990	
6	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-03 00:00	653.51	231.0	753	4796	15	1865	
7	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-04 00:00	740.71	268.0	700	4697	15	1815	
8	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-05 00:00	678.06	261.0	530	4547	15	1715	
9	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-06 00:00	789.29	329.0	580	4886	15	2065	
10	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-07 00:00	915.05	303.0	700	4106	15	1285	
11	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-08 00:00	797.53	260.0	590	3994	15	1185	
12	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-09 00:00	777.06	252.0	530	3853	15	1065	
13	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-10 00:00	710.58	236.0	429	3754	15	995	
14	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-11 00:00	675.50	223.0	380	3658	15	915	
15	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-12 00:00	635.51	210.0	343	3589	15	855	
16	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-13 00:00	705.49	237.0	360	3445	15	725	
17	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-14 00:00	638.78	208.0	332	3388	15	665	
18	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-01-15 00:00	735.32	247.0	392	3203	15	505	
10	ODE DATA DEDOCITORY DATACET 4 MELL 4 CODDEV	2015 01 10 00.00	624.24	204.0	220	2462	4 E	AEE	1 1

Mass Upload – Deviation Survey

	А	В	С	
1	Well Name	MD	TVD	
2	-	ft	ft	
3	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	0	0	
4	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	95.1	95.1	
5	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	153.6	153.6	
6	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	214.8	214.8	
7	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	273.1	273.1	
8	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	<u>333.9</u>	333.9	
9	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	393	393	
10	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	454	454	
11	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	513.6	513.6	
12	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	576.8	576.8	
13	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	640	640	
14	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	703.3	703.3	
15	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	766.3	766.3	
16	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	829.5	829.5	

Mass Upload – Wellbore Data

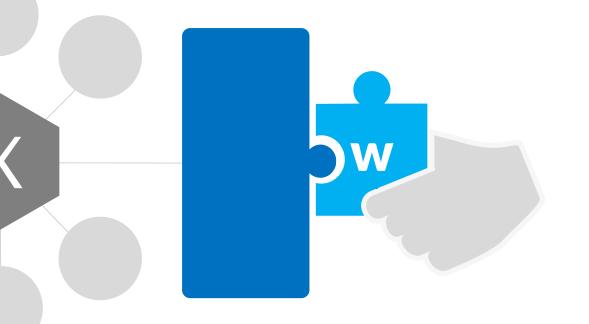
1.00

1.41

~~...

Loning

A	1 \checkmark : \times \checkmark f_x Well Name									
	А	E	F	G	Н	I.	J	К	L	М
1	Well Name	Use from Date	Flowpath	Wellhead Temperature	Tubing Bottom MD	Tubing ID	Tubing OD	Tubing Roughness	Casing 1 Top MD	Casing 1 Bottom MD
2	- · · · ·	yyyy-mm-dd or empty	select from list	F	ft	in	in	in	ft	ft
3	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY		Casing	70					0	13915
4	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2015-03-05	Tubing	70	7022	2.441	2.875	0.0006	0	7029
5	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2018-01-05	Tubing	70	6764	2.441	2.875	0.0006	0	6941
6	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2018-07-26	Tubing	70	6825	2.441	2.875	0.0006	0	6941
7	SPE-DATA-REPOSITORY-DATASET-1-WELL-1-OSPREY	2019-05-22	Tubing	70	6764	2.441	2.875	0.0006	0	6941
8	SPE-DATA-REPOSITORY-DATASET-1-WELL-2-HAWK	2021-01-01	Tubing	60	7325	1.995	2.375	0.0006	0	7549
9	SPE-DATA-REPOSITORY-DATASET-1-WELL-3-EAGLE	2017-01-01	Tubing	60	7500	2.441	2.875	0.0006	0	15493
10	SPE-DATA-REPOSITORY-DATASET-1-WELL-4-KITE	2018-01-01	Tubing	65	8332	2.441	2.875	0.0006	0	8384
11	SPE-DATA-REPOSITORY-DATASET-1-WELL-5-SWIFT	2018-01-01	Tubing	70	7626	2.441	2.875	0.0006	0	7693
12	SPE-DATA-REPOSITORY-DATASET-1-WELL-5-SWIFT	2020-06-17	Tubing	70	7626	2.441	2.875	0.0006	0	7693
13	SPE-DATA-REPOSITORY-DATASET-1-WELL-6-SPARROW	2018-01-01	Tubing	70	7682	2.441	2.875	0.0006	0	7559
14	SPE-DATA-REPOSITORY-DATASET-1-WELL-6-SPARROW	2020-06-12	Tubing	70	7682	2.441	2.875	0.0006	0	7559
15	SPE-DATA-REPOSITORY-DATASET-1-WELL-7-LARK	2019-01-01	Tubing	70	8174	2.441	2.875	0.0006	0	7975
16	SPE-DATA-REPOSITORY-DATASET-1-WELL-7-LARK	2020-03-17	Tubing	70	8174	2.441	2.875	0.0006	0	7975
17	SPE-DATA-REPOSITORY-DATASET-1-WELL-8-CARDINAL	2019-01-01	Tubing	70	8211	2.441	2.875	0.0006	0	8031
18	SPE-DATA-REPOSITORY-DATASET-1-WELL-8-CARDINAL	2020-05-12	Tubing	70	8211	2.441	2.875	0.0006	0	8031
19	SPE-DATA-REPOSITORY-DATASET-1-WELL-9-JAY	2019-01-01	Tubing	70	8050	2.441	2.875	0.0006	0	7905
20	SPE-DATA-REPOSITORY-DATASET-1-WELL-9-JAY	2020-05-13	Tubing	70	8050	2.441	2.875	0.0006	0	7905
21	SPE-DATA-REPOSITORY-DATASET-1-WELL-10-CROW	2020-01-01	Tubing	70	8000	1.995	2.375	0.0006	0	7940
22	SPE-DATA-REPOSITORY-DATASET-1-WELL-11-FALCON	2021-02-09	Tubing	60	7595	1.995	2.375	0.0006	0	7499
23										
24										
25										
26										
27										
~~			1	1						


CIIPPOULU

.

1.00

0000000000000

API & Database

Plug-in API

Plug our API into already existing databases and solutions

DB Connection

Expose your DB tables to us and we will make the updates

Input & Output

Flexible API allows for two way communication and dataflow

Multiphase Flow

No Slip:

 Assumes gas and liquid flow with the same velocity

 $V_g = V_L$

 $\circ~$ Define liquid-flux fraction

$$C_L = rac{q_L}{q_L + q_g}$$

 Gas and liquid properties are averaged by

$$\rho_m = C_L \rho_L + (1 - C_L) \rho_g$$
$$\mu_m = C_L \mu_L + (1 - C_L) \mu_g$$

Slip:

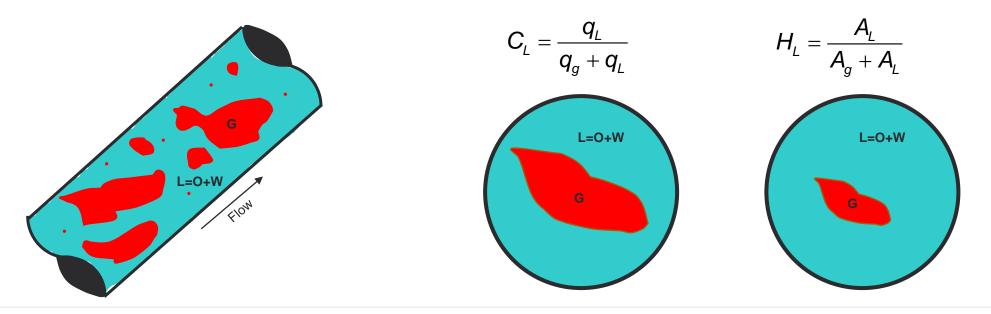
 $\circ~$ Assumes gas flows faster than liquid

$$V_g \ge V_L$$

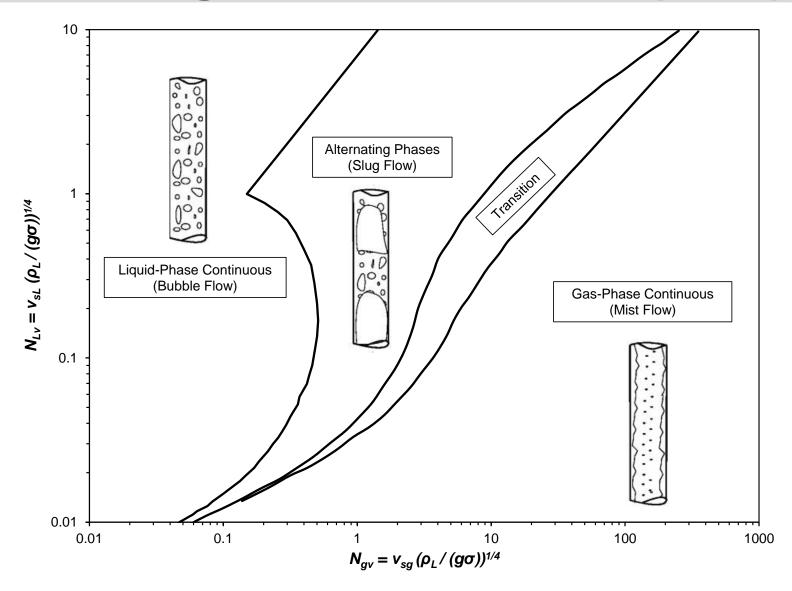
○ Define liquid hold-up (=1-void fraction)

$$H_{L} = \frac{A_{L}}{A_{L} + A_{g}}$$
$$H_{L} = \frac{q_{L}}{q_{L} + \frac{V_{L}}{V_{g}}q_{g}} \stackrel{v_{g} \ge v_{L}}{\ge} \frac{q_{L}}{q_{L} + q_{g}} = C_{L}$$

 Gas and liquid properties are averaged by


$$\rho_{s} = H_{L}\rho_{L} + (1 - H_{L})\rho_{g}$$
$$\mu_{s} = H_{L}\mu_{L} + (1 - H_{L})\mu_{g}$$

Multiphase Flow—Liquid Hold-Up


 The liquid hold-up represents the part of the pipe crosssectional area occupied by liquid.

$$C_{L} = \frac{q_{L}}{q_{L} + q_{g}} = \frac{v_{L}A_{L}}{v_{L}A_{L} + v_{g}A_{g}} = \frac{A_{L}}{A_{L} + \frac{v_{g}}{v_{L}}A_{g}}$$

If $v_g > v_L$, then $C_L < H_L$, \rightarrow Using C_L rather than H_L will account for too much gas in the cross-sectional area

Flow Regimes—Gould et al. (1974)

Multiphase Flow—**Pressure Gradient**

Velocity gradient in acceleration term is approximated as

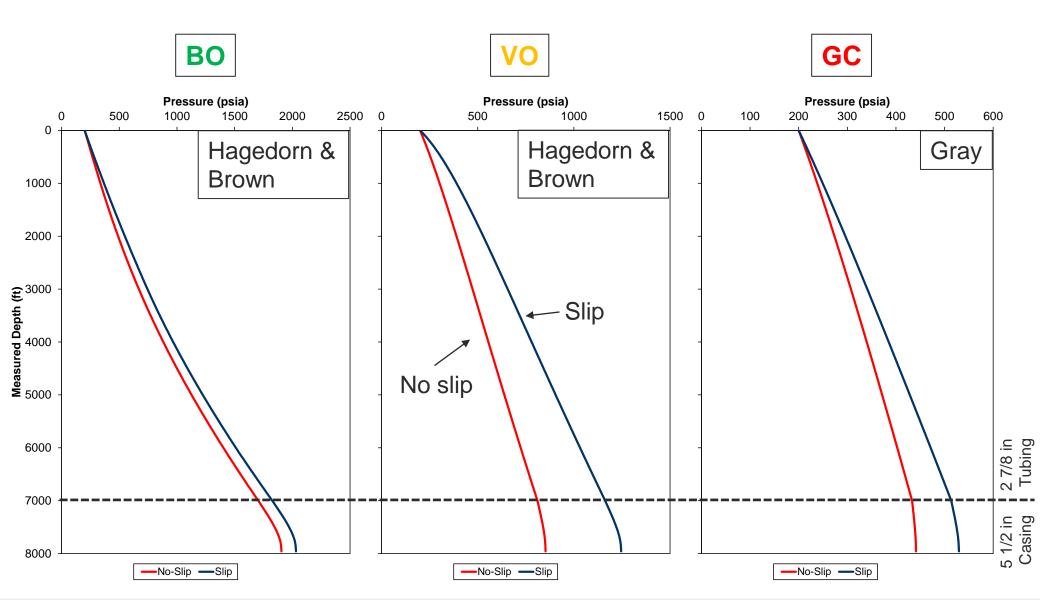
$$\frac{dv_m}{ds} \approx -\frac{v_{sg}}{p}\frac{dp}{ds}$$

Pressure gradient is rewritten to

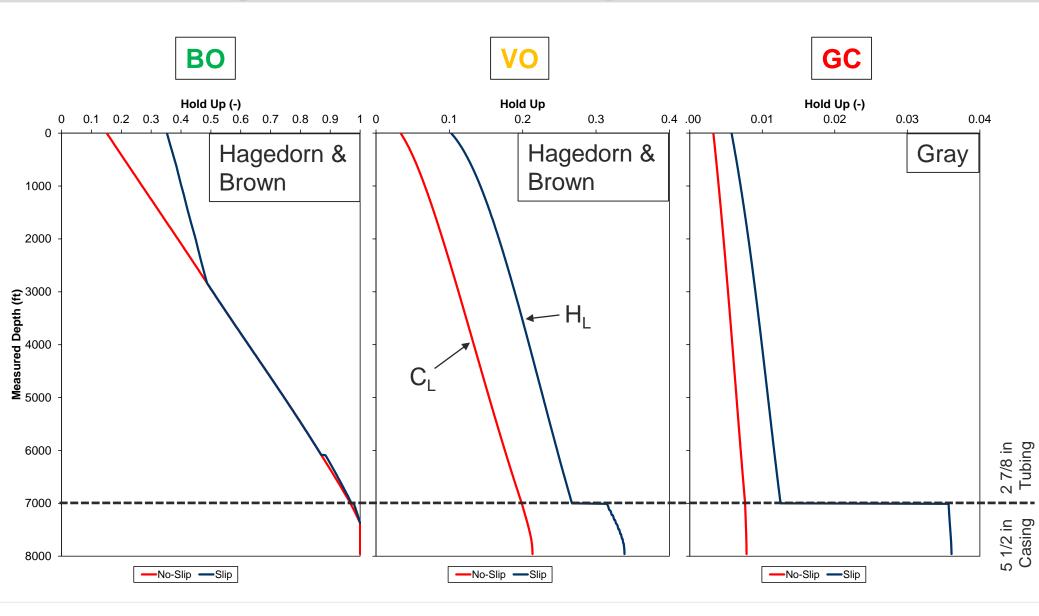
 The correlations provide the method of calculating the different terms in the equation

Multiphase Flow—Three Examples

$\,\circ\,$ Same well configuration, three different fluids flowing


	BO	VO	GC
q _o (STB/d)	2000	1000	100
$oldsymbol{q}_{g}$ (Mscf/d)	1000	2500	2500
$\boldsymbol{q}_{w}\left(\text{STB/d} ight)$	100	100	5
p _{th} (psia)	200	200	200
T_{wh} (°F)	100	100	100
<i>T_R</i> (°F)	200	200	230
GOR (scf/STB)	500	2500	25000
WOR (STB/STB)	0.1	0.05	0.1

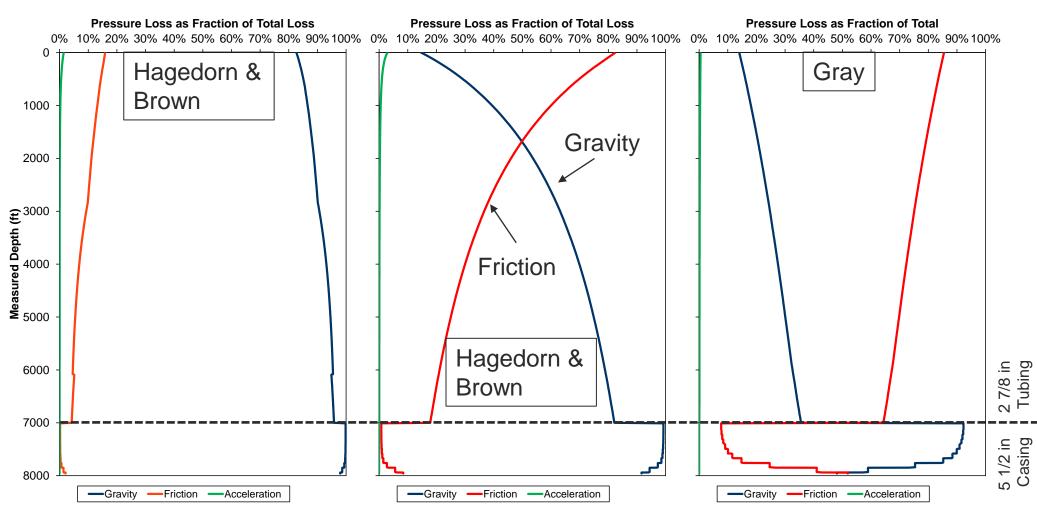
Multiphase Flow—Three Examples


$\,\circ\,$ Same well configuration, three different fluids flowing

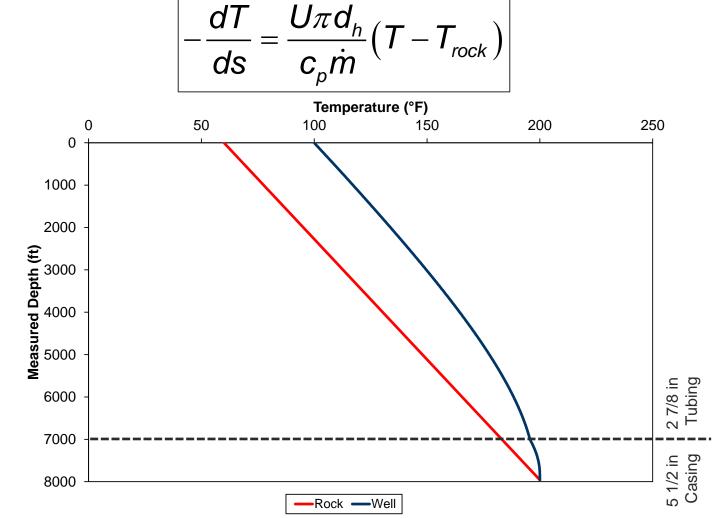
Perforated Interval ⑦ Top Perforation MD 7958 ft	Bottom Perforation MD 15439 ft		Well Data						۵ 🌡	¢
Deviation Survey (Input entire survey, table expar	nds with input)		Well Deviation Survey						2	Well [
Measured Depth (MD)	True Vertical Depth (TVD)		 Configuration 1 Flowpath: Tubing 	1 We	llbore Config	juration 1 (Initi	al)			
(ft)	(ft)	1	Artificial Lift: None						\bigcirc	
0.0	0.0			Cas	sing Data				\bigcirc	1 (+
28	28				Pipe No.	Top MD	Bottom MD	ID	Roughness	
147	146.99				(#)	(ft)	(ft)	(in)	(in)	1_
327	326.96				1	0	15493	4.778	0.0006	5
506	505.91									\sim
685	684.68			Tub	oing Data				(-)	1 (+
864	863.1				Pipe No.	Bottom MD	ID	OD	Roughness	
1043	1041.43				(#)	(ft)	(in)	(in)	(in)	
1222	1219.75				1	7000	2.441	2.875	0.0006	50
1401	1398.11			Flowpar		Arti	ficial Lift Method	-		
				Gauge I	0					
				0	Deput	t	ft Calc	ulate from g	jauge to sandfa pressures	ace 📀

Multiphase Flow—Pressure Profile

Multiphase Flow—Liquid Fractions

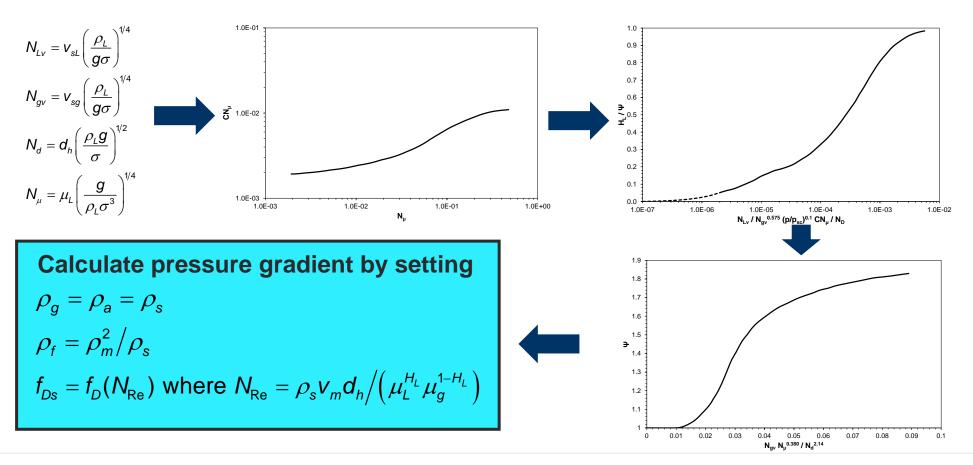


Multiphase Flow—**Pressure Gradient**



BHP Calculations—**Temperature Gradient**

 Simple thermodynamic relationships give a temperature gradient on the form



Correlations—Hagedorn and Brown

Hagedorn and Brown (1965)

 Liquid hold-up is calculated by four dimensionless numbers and graphical lookup.

Correlations—Hagedorn and Brown

 It's common to apply a modification to the original Hagedorn and Brown when bubble flow occurs. The modification follows the suggested calculation by Griffith.

Bubble flow occurs whenCalculate liquid hold-up by
$$1 - C_L < \max\left\{1.071 - 0.2218 \frac{V_m^2}{d_h}, 0.13\right\}$$
 $H_L = -\frac{V_m - V_s + \sqrt{(V_m - V_s)^2 + 4V_s V_L}}{2V_s}$ $V_s = 0.8$ ft/s

Calculate the pressure gradient by setting $\rho_g = \rho_a = \rho_s$ $\rho_f = \rho_L$ $v_m = v_L$ $f_{Ds} = f_D(N_{Re})$ where $N_{Re} = \rho_L v_L d_h / \mu_L$

Correlations—Beggs and Brill

• Beggs and Brill (1973)

 Relies on calculating the liquid hold-up for horizontal flow, and then correcting it by inclination.

$$\frac{H_L(\phi)}{H_L(0)} = \psi$$

 Both the horizontal liquid hold-up and the inclination correction factor are functions of flow regime.

$$H_{L}(0) = AC_{L}^{\alpha}N_{Fr}^{\beta} \qquad \psi = 1 + \left[\left(1 - C_{L}\right) \ln \left(DC_{L}^{\delta}N_{Fr}^{\varepsilon}N_{Lv}^{\varsigma}\right) \right] \left(\sin(\phi) - \frac{1}{3}\sin(\phi)^{3}\right)$$

	А	α	β	D	δ	٤	ζ
Segregated	0.98	0.4846	-0.0868	0.011	-3.768	-1.614	3.539
Intermittent	0.845	0.5351	-0.0173	2.96	0.305	0.0978	-0.4479
Distributed	1.065	0.5824	-0.0609	1	0	0	0

Correlations—Beggs and Brill

 Flow-regime map in the original paper is replaced by a later suggested map that includes "transition" flow.

Original Flow Map Revised Flow Map 1000 1000 Distributed Distributed 100 100 Intermittent Intermittent لے 10 z, z 10 Segregated Segregated Transition 1 0.1 0.1 0.0001 0.001 0.01 0.1 0.001 0.1 0.0001 0.01 C, C, $N_{Fr} = \frac{V_m^2}{gd_h}$ Froude Number

Correlations—Beggs and Brill

Friction factor is corrected to account for multiphase flow

$$\frac{f_{DS}}{f_D} = \mathbf{e}^S$$

where *S* is a function of $H_L(\phi)$.

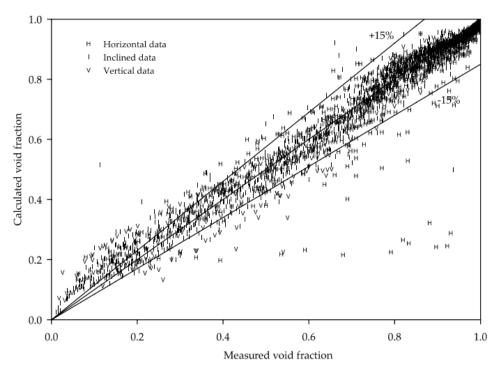
Calculate the pressure gradient by setting: $\rho_g = \rho_a = \rho_s$ $\rho_f = \rho_m$ $f_D(N_{\rm Re})$ where $N_{\rm Re} = \rho_m V_m d_h / \mu_m$

Correlations—**Gray**

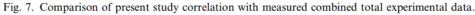
oGray (1971)

• Published in User's Manual for API 14B SCSSV Sizing Computer Program

 \circ Assumes mist flow in well \rightarrow Only applicable in gas wells

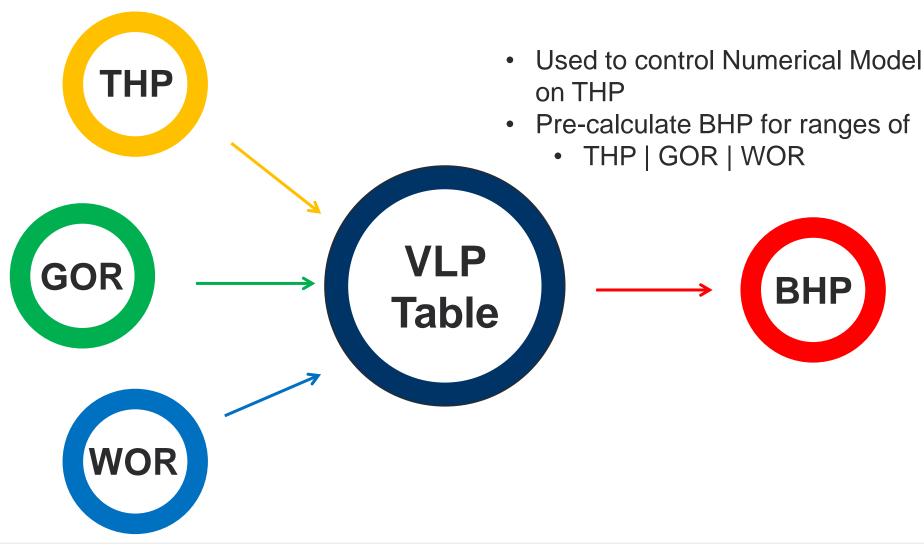

 Corrects the friction term by using an effective roughness that reflects liquid adhering to the pipe wall.

> Calculate the pressure gradient by setting: $\rho_g = \rho_a = \rho_s$ $\rho_f = \rho_m$ $f_{Ds} = f_D(N_{Re})$ where $N_{Re} = \rho_m v_m d_h / \mu_m$ and k_{eff} / d_h instead of k/d_h


Correlations—Woldesemayat and Ghajar

• Woldesemayat and Ghajar (2007)

 Correlation based on an extensive review of correlations and data for inclined pipe flow.


Calculate the pressure gradient by setting: $\rho_g = \rho_a = \rho_f = \rho_s$ $f_D(N_{\rm Re})$ where $N_{\rm Re} = \rho_s v_m d_h / \mu_s$

Tubing Tables / VLP in Numerical Model

Vertical Lift Performance Tables

"Tubing Tables"

whitson

We support energy companies, oil services companies, investors and government organizations with expertise and expansive analysis within PVT, gas condensate reservoirs and gas-based EOR. Our coverage ranges from R&D based industry studies to detailed due diligence, transaction or court case projects.

We help our clients find best possible answers to complex questions and assist them in the successful decisionmaking on technical challenges. We do this through a continuous, transparent dialog with our clients - before, during and after our engagement.

The company was founded by Dr. Curtis Hays Whitson in 1988 and is a Norwegian corporation located in Trondheim, Norway, with local presence in USA, Middle East, India and Indonesia.

Global	Asia-Pacific	Middle East	Americas
Curtis Hays Whitson, PhD curtishays@whitson.com	Kameshwar Singh, PhD singh@whitson.com	Ahmad Alavian, PhD alavian@whitson.com	Mathias Carlsen, MSc carlsen@whitson.com
Whitson AS	Whitson USA LLC		
Whitson AS Skonnertvegen 7, 7053 Trondheim, Norway	Whitson USA LLC 3410 W Dallas St. Houston, TX 77019, US		