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RTA in

whitson+

Mathias Carlsen | Mohamad Dahouk | Curtis Whitson

Course held Virtually

26 June 2023 
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The course 
is recorded
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Access to whitson+

www.courses.whitson.com

Username: your e-mail

Password: WhitsonRTA2024*

*Send an e-mail to support@whitson.com if you need help to login. 

NOT YOUR COMPANY DOMAIN

mailto:support@whitson.com
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Introduction 
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Knowledge Sharing Session Tomorrow!
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Small Courses throughout the Year
• Half-day courses (4 hrs)

• Hands-on focus with software and theory 

• 7 Different Virtual Courses, 8 am – 12 pm CST

• PVT & Phase Behavior – 14 Feb 2024 

Recording: https://youtu.be/qxqzl8B_I2A

Slides: https://shorturl.at/gzBNW

• Bottomhole Pressure Calculations – 24 April 2024

Recording: https://youtu.be/0pvojymb-5U

Slides: https://shorturl.at/wLWZ9 

• Analytical & Numerical RTA – 26 June 2024 (TODAY)

• Flowing material balance – 21 Aug 2024

• Nodal Analysis – 2 October 2024

• Well Tests (CPG & DFIT) – 16 October 2024

• DCA & Type Wells – 4 December 2024

Send e-mail to carlsen@whitson.com if you haven’t received the invite to the courses.

https://youtu.be/qxqzl8B_I2A
https://shorturl.at/gzBNW
https://youtu.be/0pvojymb-5U
https://shorturl.at/wLWZ9
mailto:carlsen@whitson.com
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Need Course Certificate?

Contact carlsen@whitson.com
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Rate Transient Analysis

The science (art) of combining 

rates and pressures
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Rate Transient Analysis

pwf

Time
Time

q
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What we will Cover

• whitson+ and RTA basics

• Login & Access

• Workflow (“Clicking the buttons”)

• General structure and functionality

• The course has an RTA Focus primarily

• Classical RTA  (Square root of Time Plot)

• Numerical RTA (“Bowie Workflow”)

• Fractional RTA (Acuna Work) 

We’ll assume the inputs are correct (PVT, BHP, etc.) 
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REPETITION       
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RTA 1.01
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Rate Transient Analysis (RTA) 1.01
Incorporates both fluid rates and flowing 

pressures

What is it used for?

Quantify productivity (LFP aka A√k) and 

contacted pore volumes (OGIP and OOIP)   

• Well performance comparison

• Forecasting 

• Completion effectiveness & 

frac optimization 

• Production optimization / 

drawdown management

• Calibration / starting point for 

advanced simulation studies 
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Four “Buckets” of RTA
•  Diagnostics

• Flow regime identification

• Relative well performance normalized for 
difference in pressure drawdown

• Quantifying A√k (aka LFP) and contacted pore 
volume (OOIP | OGIP)

• Resolving physical parameters like xf and perm

• Must be in full boundary

• Also need to know Nf and h

• Fracture shape (rectangular vs non-uniform)

More 

advanced

1

2

3

4
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“It is better to be roughly 

right, than precisely wrong”
- John Maynard Keynes
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PVT & Fluids

C1

C7+
C2

1

Bottomhole Pressure 

Calculations

2

Simulation + Forecast

5

Analytical & 

Numerical RTA

4

Multiphase FMB

3

Unconventional Reservoir Workflow
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Flow Regimes 1.01

Infinite acting flow ends as pressure transient reaches 
one reservoir boundary

Transitional flow (period in between)

Boundary dominated flow starts when the wellbore 
pressure response is affected by all reservoir boundaries
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What can be Derived “Uniquely” from RTA? 

LFP 
(or A√k)

OOIP
(or OGIP) 

Observed during 

infinite-acting, linear flow

Observed during 

boundary dominated flow

CONTACTED
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(

IP

EUR

High A√k 
High OOIP

Low A√k 
High OOIP

Low A√k
Low OOIP

High A√k
Low OOIP

(e.g., first year cums)

Courtesy: Sam Shoun
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Volume Resolved from RTA

IMPORTANT 

There is a difference between 

the petrophysically mapped 

in-place volume (grey) and 

the volume resolved from 

RTA, i.e. the contacted pore 

volume* (blue).

*Also called stimulated rock volume (SRV) or drained rock volume (DRV) 
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OOIP = HCPV/Boi

OGIP = OOIPxRsi

Vp = HCPV/(1-Swi)

Contacted Pore Volume (Vp)

All the below used interchangeably

OWIP = PVxSwi/Bw
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How many boundaries?

1 boundary

1 dimensional model
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How many flow regimes?

2 flow regimes

1. Infinite acting (IA)

2. followed by boundary dominated (BDF)
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How many boundaries?

1 boundary

1 dimensional model



25Copyright © Whitson AS

How many boundaries?

2 boundaries

2-dimensional model
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How many flow regimes?

3 flow regimes

1. Infinite acting (IA)

2. Transitional Flow 

3. Boundary dominated (BDF)
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ENOUGH FLOW REGIMES ALREADY

JUST GET ON WITH THE FREAKIN’ 

COURSE
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Observed Flow Regimes in Tight Unconventionals

1. Infinite acting flow for the entire observed history 

2. Initially infinite acting flow, followed by transitional flow for the 

rest of the observed history

3. Initially infinite acting flow, followed by transitional flow and 

finally boundary dominated flow 

4. Initially infinite acting flow followed by boundary dominated flow 

for the rest of the observed history

5. Transitional flow for the entire observed history

6. Initially transitional flow followed by boundary dominated flow for 

the rest of the observed history

7. Boundary dominated flow for the entire observed history
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Sequence of Flow Regimes in Tight Unconventionals

• IA

• IA → TF

• IA → TF → BDF

• IA → BDF

• TF

• TF → BDF

• BDF

ENOUGH FLOW REGIMES ALREADY

JUST GET ON WITH THE FREAKIN’ 

COURSE
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RTA - 
In a Nutshell
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Different Types of RTA

“Square Root of Time Plot”

Classical RTA

1

Numerical RTA

“Bowie Workflow”

2

Fractional RTA

“Acuna”

3
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Classical RTA

1
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Square Root of Time Plot

Δ
p

/q

√t

telf

1
Important! #2

Time to end of linear flow

Important! #1 

Slope of this line
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Square Root of Time Plot
Δ

p
/q

√t

1

Rate Normalized Pressure

(RNP)

Δp/q = (pi-pwf)/q
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Square Root of Time Plot – slope (m)

Δ
p

/q

√t

1

Small LFP

Big LFP

Bigger LFP
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Square Root of Time Plot - telf

Δ
p

/q

√t

1

Big OOIPSmall OOIP Bigger OOIP
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Numerical RTA

2
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Problem2

Model Reality

Assumptions

Single-phase flow and

constant rate or pressure

pwf

Time

q
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Square Root of Time Plot2
Δ

p
/q

√t t
p

w
f

telf

Bubblepoint
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What does this lead to?

(1) Higher perm

(2) Shorter fracture half length 

(3) More wells per section 

…

2
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Numerical RTA – Summary

• Horizontal flat line indicates infinite 

acting, linear flow

• Deviation below this line represents 

boundary dominated  / transitional flow

• The magnitude of the flat line indicates 

the LFP

IA BDF

L
F

P

Time

Time to end of linear flow

2
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#ADIPEC  #ADNOC  @ADIPECOfficialwww.adipec.com

• A set of models are run where the 

size of the model is the only thing 

that changes

• Type curve closest to actual data 

represents contacted pore 

volume

OOIP
LFP

42

L
F

P

Time

Numerical RTA – Summary2
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URTeC 2967 (2020)

Braden Bowie

James Ewert

Numerical RTA2
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Connecting the Dots …

1 2

LFP OOIP

2
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Numerical RTA … Inputs

Rel. 

Perm

NOT measured

or calculated

Prod. 

Data
PVT

“A problem”

2
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Fractional RTA

3
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Problem3

Model Reality

Courtesy: Jorge Acuna 

Uneven frac spacing



48Copyright © Whitson AS

Classical RTA vs “Fractional” RTA3

Courtesy: Jorge Acuna 

Fractional RTAClassic RTA

Classical RTA: Solves only equally spaced fracture networks (δ = 0.5), gives A√k

Fractional RTA: Solves for complex system of fractures (any value of δ), gives Akδ 
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“Generalized” LFP

LFP = Akδ

3

Fractional RTA



50Copyright © Whitson AS

Rate Normalized Pressure (RNP)
Δ

p
/q

t

3

∆𝑝

𝑞
= 𝑚𝑡1−𝜕 + 𝑏
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Infinite acting, linear flow – δ = 0.5 

Transitional flow (period in between) – 0 < δ < 0.5 

Boundary dominated flow – δ = 0

Physical Significance of Delta (δ)3

*in material balance time
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RTA

RTA
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What can be Derived “Uniquely” from RTA? LFP & OOIP

LFP 

= A√k
OOIP 

= HCPV/Bo

Correlate with 1 yr cum Correlate with EURs

Observed during 

infinite-acting, linear flow

Observed during 

boundary dominated flow

RTA
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What is A√k aka LFP?

A√k is just the sideways “kh” 

RTA

Ah! Makes 

sense!

Courtesy: Sam Shoun
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What are we “hunting” for? 𝑨 𝒌RTA

kh

Vertical Wells Multi-Frac 

Horizontal Wells

𝐀 𝐤

Courtesy: Sam Shoun
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Linear Flow Parameter (LFP)

𝐿𝐹𝑃 = 𝐴 𝑘 = 4𝑛𝑓𝑥𝑓ℎ 𝑘

RTA
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Contacted Pore Volume

𝑂𝑂𝐼𝑃 =
HCPV

𝐵𝑡𝑖
=

2𝑥𝑓𝐿ℎ𝜑 1 − 𝑆𝑤𝑖

𝐵𝑡𝑖

RTA



58Copyright © Whitson AS

RTA … Different Methods

“Square Root of Time Plot”

Classical RTA Numerical RTA

“Bowie Workflow”

Fractional RTA

“Acuna”

LFPclassical   ≠    LFPnumerical  ≠      LFPfractional

RTA
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Classical RTA

RTA
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Key Assumption: Symmetry of Element Model

“1-dimensional model” | Only one no-flow boundary

*SPE 184397, Steve Jones

RTA
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Δ
p

/q

√t

Classical RTA 1.01

3. Slope mCR

(=used to find 

A√k)

4. Time to end of 

linear flow(=telf)

1. Material balance 

time

2. (pi-pwf)/q

RTA
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Material Balance Time

The use of material balance time is common in the rate transient analysis. 

Material balance time

• is a superposition time function

• converts variable rate data into an equivalent constant rate solution

• is rigorous for a boundary dominated flow regime

• works well for infinite acting data also, but is only an approximation 

(errors can be up to 20% for linear flow)

Mathematically, material balance time, MBT is expressed in:

where  Q(t) and q(t) are cumulative production and production rate at time t.

1RTA
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Rate Normalized Pressure: ∆p/q

Rate Normalized Pressure (RNP) is very useful for production analysis where 

flowing pressures and rates change through time.

It is defined as the flowing pressure drop divided by rate.

2RTA
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Solution for Linear Flow (constant rate)
3

Pseudo pressure

RTA

mCR

Gas

Oil

mCR

Δ
p

/q

√t

Δ
p

/q

√t

mcr
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Time to end of Linear FlowRTA 4

Solve for k

Δ
p

/q

√t

telf
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Time to end of Linear Flow

https://manual.whitson.com/modules/well-performance/analytical_rta/

RTA 4

Gas

Oil

Vp = 2xfhLwφ
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Pressure Normalized Rate: q/∆pRTA

Pressure normalized rate is the inverse of rate normalized pressure. 

Pressure normalized rate is very useful for production analysis where flowing 

pressures and rates change through time. 

It is defined as the rate divided by flowing pressure drop.
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Classical RTA DashboardRTA

∆p/q vs √t q vs t 

q/∆p vs t pwf vs t
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Derivatives & IntegralsRTA

Derivatives Integrals

“Derivative analysis amplifies the 
reservoir signal but also amplifies 

the noise”

“Integral analysis reduces the noise, 
but also reduces the signal.”

Example: Clean Data

Example: Noisy Data Example: Integral Applied
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Numerical RTA

RTA
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Numerical RTA … Inputs

Rel. Perm

NOT measured

or calculated 

from readily 

available data

Prod. Data

Measured or 

calculated from 

readily available 

data

PVT

Measured or 

calculated from 

readily 

available data

RTA
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Numerical RTA
Key Concepts & theory

RTA
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Key Assumption: Symmetry of Element Model

“1-dimensional model” | Only one no-flow boundary

*SPE 184397, Steve Jones

RTA
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Industry Standard Workflow

1 2

Source: https://www.sagawisdom.com/courses/rate-transient-analysis-rta

RTA

https://www.sagawisdom.com/courses/rate-transient-analysis-rta
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Superposition Effects

Changing Rates & Pressures

RTA
p

w
f

t √t
Δ

p
/q
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Multi-Phase Flow + Superposition Effects
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Multi-Phase Flow + Superposition Effects
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What does this lead to?

(1) Higher perm

(2) Shorter fracture half length 

(3) More wells per section 

→ Overcapitalization … 

RTA
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The “Bowie Workflow”

Nothing to do with

 David Bowie, James Bowie or

the Bowie Knife

Braden Bowie

Reservoir Engineering Lead, Apache

https://doi.org/10.15530/urtec-2020-2967

RTA
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Three Fundamental Relationships

For any two wells*: 

(1) with the same value of LFP, rate performance is 

identical during infinite-acting (IA) behavior

(2) with the same ratio LFP / OOIP, GOR and water cut 

behavior is identical for all times, IA and boundary 

dominated (BD)

(3) with the same values of LFP and OOIP, rate 

performance will be identical for all times, IA and BD

*With the same (a) fluid initialization (GORi and Swi) and (b) relative permeability relations, and (c) bottomhole pressure (BHP) time variation (above and below 

saturation pressure)..

RTA
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Same LFP, same IA performanceRTA

Q
G

O
R

q

Time

Time Time
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Same LFP / OOIP ratio, same GOR 
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ϕ 50 40 5 fraction
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2
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Same LFP and OOIP, same performance
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The “Bowie Workflow”

1. Create a numerical model that is large enough to behave infinite acting 

(=large OOIP) for the entirety for the historical time.

Reservoir Model

Far to closest boundary

LFP of 

model is 

known

RTA
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The “Bowie Workflow”

2. Run this “infinite acting model” on the wells actual measured bottomhole 

pressure (pwf)  

pwf,actual

Time

qo,IA model

qw, IA model

qw, IA model

RTA
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The “Bowie Workflow”

3. Calculate the ratio between the actual measured oil rates and infinite acting 

model oil rates: r = qo,actual/qo,IA (alternative: r = Qo,actual/Qo,IA)

r

Time

qo,actual

qo, IA model

Time

RTA
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The “Bowie Workflow”

4. Calculate the daily “LFP” by multiplying the daily ratio r (Step 3) with the known 

LFP of the infinite acting, single fracture model (Step 1)

r

LFP
from IA model

L
F

P

“Bowie Plot” 

Time

RTA
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The “Bowie Workflow”

4. Calculate the daily “LFP” by multiplying the daily ratio r (Step 3) with the known 

LFP of the infinite acting, single fracture model (Step 1)

1. A horizontal flat line indicates infinite 

acting, linear flow

2. Deviation below this line represents 

boundary dominated  / transitional flow

3. The magnitude of the flat line indicates 

the LFP

IA BDF

L
F

P

“Bowie Plot” 

Time

RTA
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The “Bowie Workflow”

5. Repeat Step 1-2 for multiple, smaller OOIP volumes. This results in several “type 

curves” with each its own LFP / OOIP ratio.

L
F

P
 /
 O

O
IP

 

“Bowie Plot” 

Time

RTA
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The “Bowie Workflow”

6. Pick a “Representative LFP”  based on the early time “LFP”. Remember that a flat, 

horizontal line is expected during infinite acting behavior.

L
F

P

“Bowie Plot” 

Time

RTA
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The “Bowie Workflow”

7. Multiply each the LFP / OOIP ratios simulated in Step 5 by the “Representative LFP” 

picked in Step 6. 

L
F

P

“Bowie Plot” 

Time

L
F

P

“Bowie Plot” 

Time

RTA
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L
F

P

“Bowie Plot” 

Time

The “Bowie Workflow”

8. Pick the OOIP stem that matches the actual production data the best. 

L
F

P

“Bowie Plot” 

Time

RTA
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Numerical RTA – Summary

• A horizontal flat line indicates infinite 

acting, linear flow

• Deviation below this line represents 

boundary dominated  / transitional flow

• The magnitude of the flat line indicates 

the LFP

IA BDF

L
F

P

Time

Time to end of linear flow

RTA
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#ADIPEC  #ADNOC  @ADIPECOfficialwww.adipec.com

• A set of models are run where the 

size of the model is the only thing 

that changes

• Type curve closest to actual data 

represents contacted pore 

volume

OOIP
LFP

95

L
F

P

Time

Numerical RTA – SummaryRTA
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Unconventional Reservoir Workflow

Step 1:

PVT & Rel. Perm

C1

C7+
C2

1

Step 2:

Interpretation

2

Numerical

Reservoir Simulation

4

Step 3:

Resolve Parameters

3

Numerical RTA

(Bowie Workflow)

GOR (Soi, Sgi), Swi

kr OOIP

xf

k

LFP

RTA
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Connecting the Dots …

1 2

LFP OOIP

Source: https://www.sagawisdom.com/courses/rate-transient-analysis-rta

RTA

https://www.sagawisdom.com/courses/rate-transient-analysis-rta
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Fractional RTA

RTA
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Problem

Model Reality

Courtesy: Jorge Acuna 

Uneven frac spacing

RTA
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Classic RTA vs “Fractional” RTA

Courtesy: Jorge Acuna 

Fractional RTAClassic RTA

Classic RTA: Solves only equally spaced fracture networks (δ = 0.5), gives A√k

Fractional RTA: Solves for complex system of fractures (any value of δ), gives Akδ 

RTA
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“Generalized” LFP

LFP = Akδ

Fractional RTA

RTA
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Rate Normalized Pressure (RNP)
Δ

p
/q

t

∆𝑝

𝑞
= 𝑚𝑡1−𝜕 + 𝑏

RTA
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q
/Δ

p

t

𝑞

∆𝑝
=

1

𝑚𝑡1−𝜕 + 𝑏

Pressure Normalized Rate (PNR)RTA
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Infinite acting, linear flow – δ = 0.5 

Transitional flow (period in between) – 0 < δ < 0.5 

Boundary dominated flow – δ = 0

Physical Significance of Delta (δ)

*in material balance time

RTA
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Rate Normalized Pressure (RNP)
Δ

p
/q

t

∆𝑝

𝑞
= 𝑚𝑡1−𝜕 + 𝑏

RTA

𝑚 =
0.468

0.001055𝛿

241−𝛿

𝛤 𝛿 1 − 𝛿

𝐵𝑜

4ℎ𝑥𝑓𝑘𝛿

𝜇𝑜
𝛿

𝜑𝑐𝑡
1−𝛿

Oil

𝑚 =
4.716

0.001055𝛿

241−𝛿

𝛤 𝛿 1 − 𝛿

𝑇𝑅

4ℎ𝑥𝑓𝑘𝛿

𝜇𝑔
𝛿−1

𝜑𝑐𝑡
1−𝛿

Gas
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Looks Difficult … Actually Familiar!RTA

𝑚 =
0.468

0.001055𝛿

241−𝛿

𝛤 𝛿 1 − 𝛿

𝐵𝑜

4ℎ𝑥𝑓𝑘𝛿

𝜇𝑜
𝛿

𝜑𝑐𝑡
1−𝛿

19.927 for δ = 0.5

for δ = 0.5

Oil

112Copyright © Whitson AS

Solution for Linear Flow (constant rate)
2

Pseudo pressure

RTA

mCR

Gas

Oil

mCR

√t

∆
p

/q

Reference
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Looks Difficult … Actually Familiar!RTA

𝑚 =
4.716

0.001055𝛿

241−𝛿

𝛤 𝛿 1 − 𝛿

𝑇𝑅

4ℎ𝑥𝑓𝑘𝛿

𝜇𝑔
𝛿−1

𝜑𝑐𝑡
1−𝛿

200.8 for δ = 0.5

for δ = 0.5

Gas

112Copyright © Whitson AS

Solution for Linear Flow (constant rate)
2

Pseudo pressure

RTA

mCR

Gas

Oil

mCR

√t

∆
p

/q

Reference
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Challenge to the AudienceRTA

Correlate δ to completion practices

δ around 0.5 = 

high cluster efficiency 

δ far from 0.5 =  

poor cluster efficiency 
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Fractional + 
Numerical RTA

RTA
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Well in Transitional Flow for Entire HistoryRTA

Limitations of Classical, Numerical RTA
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NRTA Extended to Complex Fracture Systems

Numerical 

RTA
Fractional

RTA

RTA
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Key Definitions

𝑂𝑂𝐼𝑃 =
2𝑥𝑓𝐿ℎ𝜑 1 − 𝑆𝑤𝑖

𝐵𝑡𝑖

𝐿𝐹𝑃 = 4𝑛𝑓𝑥𝑓ℎ𝑘𝛿

RTA
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Fundamental Relationship

LFP, OOIP and δ rate performance will 

be identical for all times 

Same production during i) infinite acting 

(IA), ii) transitional and iii) boundary-

dominated flow (BDF)

*With the same (a) fluid initialization (GORi and Swi) and (b) relative permeability relations, and (c) bottomhole pressure (BHP) time variation (above and below 

saturation pressure). 

RTA
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ExampleRTA
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60 10 15 20 30

From δ to Numerical Model 

δ
𝑒. 𝑔.  0.3

RTA
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Relationship between δ to Numerical Model

𝑞 = 𝑐′𝑡−(1−𝛿)
𝛿 ≠ 0.5

𝛿 = 0.5 𝛿 = 0.5 𝛿 = 0.5 𝛿 = 0.5

RTA
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Numerical RTA … Inputs

Rel. 

Perm

NOT measured

or calculated

Prod. 

Data
PVT

“Still a problem”

Delta

δ

RTA
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Numerical Model
Reservoir Simulation & Forecasting

NUM
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PVT & Fluids

C1

C7+
C2

1

Bottomhole Pressure 

Calculations

2

Simulation + Forecast

5

Analytical & 

Numerical RTA

4

Multiphase FMB

3

Unconventional Reservoir WorkflowNUM
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Creating a Numerical Model RealizationNUM

Realization 1 Realization 2 Realization 3

Numerical RTA Interpretation

Numerical RTA Interpretation
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Numerical EnginesNUM

OPM FLOW
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Grid RefinementNUM

https://manual.whitson.com/modules/well-performance/reservoir-simulation/#21-gridding
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Gridding and Numerical DispersionNUM

• Mix of logarithmic and uniform 

gridding.

• Numerical dispersion is an inherent 

reservoir simulation problem that 

causes computational results to be 

less accurate.

• When the simulation grids are 

coarse, numerical dispersion is an 

undesirable simulation artifact.

• Sufficient gridding is required for 

accurate results, but also slows down 

simulation runs. Hence, it’s a fine  

balance between accuracy and 

practicality.

https://manual.whitson.com/modules/well-performance/reservoir-simulation/#21-gridding
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Well Control – What does it mean?NUM
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Well Control: Use Oil RateNUM
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Well Control: Use Gas RateNUM
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Well Control: Use Water RateNUM
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Well Control: Use Bottomhole PressureNUM
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“There are two kinds 

of forecasters: those 

who don’t know, and 

those who don’t know 

they don’t know.”

- John Kenneth Galbraith
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ForecastNUM

?
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ForecastNUM
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Software 
Basics
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whitson+: Set Zoom to 70-80%

Click here

(Alternatively, CTRL + “-” 

on keyboard)
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whitson+: Maximize Screen by “F11”

Click F11
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whitson+: More Screen Real Estate 



136Copyright © Whitson AS

whitson+: More Screen Real Estate 
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whitson+: Navigation Panel

Navigation Panel

Overview of all modules
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whitson+: Software Hierarchy

Software Hierarchy

Fields → Projects → Wells
Next / Previous Well 

in a project
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whitson+: Create Multiple Analyses for a Well

Save an analysis 

(or interpretation) 

for a given well
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whitson+: Create Multiple Analyses for a Well

Save an analysis 

(or interpretation) 

for a given well

Click here and it will bring 

you to the well overview 

page

Click here and it will bring 

you to the well overview 

page

Well Overview page
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whitson+: Change Units

Change Units
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whitson+: Input Card

These “Cards” is 

what we call an 

“Input Card” and 

they contain input 

information for the 

different features-

Open by 

clicking here
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whitson+: Support Ticket

You can also e-mail 

support@whitson.com
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whitson+: Manual

User manual
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Important Shortcut: Refresh

• Refresh shortcut: “CTRL + R”

• Use if you experience 

• Bad connection

• The browser is “stuck”
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Eagle Ford 

Workflow Example

SPE Data Repository Well #4 (Kite) 

Download associated data here: https://manual.whitson.com/onboarding/mass-upload-examples/
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Software – Important Notes

Set zoom in browser 

between 60-80%

Use Google Chrome, 

Microsoft Edge, or Firefox

Use F11 to maximize screen

whitson+

Click “F5” or “CTRL + R” if you 

experience issues (hard refresh)
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PVT & Fluids

C1

C7+
C2

1

Bottomhole Pressure 

Calculations

2

Simulation + Forecast

5

Analytical & 

Numerical RTA

4

Multiphase FMB

3

Unconventional Reservoir Workflow
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https://manual.whitson.com/modules/fluid-definition/#initial-gor

1

PVT

Assume solution GOR (Rs) = initial 

producing GOR (Rp) = 750 scf/STB

PVT … Fluid Initialization

Use GOR method in whitson+ to predict fluid 

composition

• Rs = 750 scf/STB | Bo = 1.38 RB/STB

• Bubblepoint = 2875 psia

• Undersaturated, black oil
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https://manual.whitson.com/modules/fluid-definition/#initial-gor

1 PVT … Fluid Initialization

Use GOR method in whitson+ to predict fluid 

composition

• Rs = 750 scf/STB | Bo = 1.38 RB/STB

• Bubblepoint = 2875 psia

• Undersaturated, black oil
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• Assume bottomhole pressure 

provided in the SPE data repository 

dataset is correct

             (… even though it’s calculated)

• Smooth the pressures graphically in 

whitson+ 

2 Flowing Bottomhole pressure (pwf)
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Source: https://manual.whitson.com/modules/flowing-material-balance/multiphase/

3 Multiphase Flowing Material Balance

MBTm

Δ
β

t 
/ 
m

OOIP = 700 MSTB
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Analytical vs Numerical RTA

LFPanalytical    ≤   LFPnumerical

Analytical RTA

Single-phase

Numerical RTA

Multi-phase

4
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4 Classical RTA - Pick LFP 

LFP = 24000 ft2 md1/2 
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4 Fractional RTA - δ

δ = 0.5

(IA flow)
δ = 0

(BDF)
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4 Numerical RTA – Pick LFP & OOIP

LFP = 50000 ft2 md1/2 

OOIP = 700 MSTB

L
F

P

Time

Check out more here: https://youtu.be/i4tS_0kX7qQ?t=13246
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Analytical vs Numerical RTA

LFPanalytical = 24,000 ft2 md1/2 ≤ LFPnumerical = 50,000 ft2 md1/2 

Analytical RTA

Single-phase
Numerical RTA

Multi-phase

4
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5 Numerical Model – History Match
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5 Numerical Model – History Match
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5 Numerical Model – History Match + Forecast
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whitson

We support energy companies, oil services companies, investors and government organizations with expertise and 

expansive analysis within PVT, gas condensate reservoirs and gas-based EOR. Our coverage ranges from R&D 

based industry studies to detailed due diligence, transaction or court case projects. 

The company was founded by Dr. Curtis Hays Whitson in 1988 and is a Norwegian corporation located in Trondheim, 

Norway, with local presence in USA, Middle East, India and Indonesia.

We help our clients find best possible answers to complex questions and assist them in the successful decision-

making on technical challenges. We do this through a continuous, transparent dialog with our clients - before, during 

and after our engagement.

Whitson AS

Skonnertvegen 7, 7053

Trondheim, Norway

Whitson USA LLC

www.whitson.com

3410 W Dallas St.

Houston, TX 77019, US

Copyright © Whitson AS

Confidential Report 

Curtis Hays Whitson, PhD

curtishays@whitson.com

Asia-Pacific Middle East AmericasGlobal

Kameshwar Singh, PhD

singh@whitson.com

Ahmad Alavian, PhD

alavian@whitson.com

Mathias Carlsen, MSc

carlsen@whitson.com
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Rel Perms
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[1] GOR = gas-oil ratio = qg/qo 
[2]  krwro: Relative perm of water at Sw = 1-Sorw, Sg = 0
[2]  krocw: Relative perm of oil at Sw=Swc, Sg=0.
[2]  krgro: Relative perm of gas at Sw=Swc, So=Sorg
[3] Baker is used for three-phase relative perm.
[4] These are rules of thumb and simplifications. Deviations might occur.
[5] Rel. perm parameters such as krgro, Swc, Sorg, nw, now doesn’t have a big, or simple, relationship with WOR (and water cut) and is excluded from the overview.

Relative Permeability: Cheat Sheet

ng

nog

G
O

R

Time

krocw

krgro

krwroSorw

Sorg

Sgc
Increasing these

reduces 

producing GOR

Increasing these 

increases 

producing GOR

Residuals Exponents Endpoints

6

1

1

6

0%

40%

0%

20%
1

0.1

1

0.1
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Relative Permeability: Cheat Sheet

Time

Increasing these

reduces 

producing WOR

Increasing these 

increases 

producing WOR

Residuals Exponents Endpoints

6

1

1

6

0%

40%

0%

40%
1

0.1

1

0.1

W
O

R
 o

r 
W

a
te

r 
C

u
t

Sorw krwro

krocwnw

now

[1] WOR = water oil ratio = qw/qo | water cut = qw/(qw+qo)
[2]  krwro: Relative perm of water at Sw = 1-Sorw, Sg = 0
[2]  krocw: Relative perm of oil at Sw=Swc, Sg=0.
[2]  krgro: Relative perm of gas at Sw=Swc, So=Sorg
[3] Corey model is assumed here. Baker is used for three-phase relative perm.
[4] These are rules of thumb. Deviations might occur.
[5] Rel. perm parameters such as krgro, Sgc, Sorg, nog, ng doesn’t have a big, or simple, relationship with WOR (and water cut) and is excluded from the overview.
[6] For reservoir oils, krgro, Sgc, Sorg, nog, ng only have an impact on WOR below the bubblepoint, pb. Hence, if WOR changes are observed below pb these are helpful.

Swc
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Crow Well

Worked 

Example
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Dry Gas 
Example

Worked 

Example
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Synthetic 
Well

Worked 

Example
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DEMO
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AutoRTA

DEMO
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Low Fcd

Discussion
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Well Performance Evidence of Low Fcd
Δ

p
/q

√t

Observation 1

Positive intercept on 

square root of time plot

G
O

R
t

Observation 2

“Linearly” increasing GORs

below saturation pressure
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Well Performance Evidence of Low Fcd

Observation 3

Increasing LFPs in 

Bowie Diagnostic Plot

p
w

f

t

Observation 4

Actual build-up pressure

higher than modelled 

build-up pressure

Actual

L
F

P

t
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Well Performance Evidence of Low Fcd
q

/Δ
p

t

Observation 5

Lower than ½ slope on 

a RNP plot.

1/2

1/4

1/8

High Fcd

Low Fcd

Lower Fcd
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Pressure Dependent 
Permeability

Discussion
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Well Performance Evidence of Pressure Dep. Perm

Observation 1

LFPs cross through stems 

in Bowie Diagnostic Plot

p
w

f

t

Observation 2

Actual build-up pressure

higher than modelled 

build-up pressure

Actual

L
F

P

t
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Δ
p

/q

t

Well Performance Evidence of Pressure Dep. Perm

Observation 3

 “Power-law” well performance

 i.e. 0 < 𝝏 < 0.5

G
O

R
t

Observation 4

“Suppressed” GORs

below saturation pressure
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Analytical RTA

w/ Total Reservoir 
Fluids

DEMO
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Multi-Layer

DEMO
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Derivative
Analysis

DEMO
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