RTA in

UPD

whitson+

Mathias Carlsen | Mohamad Dahouk | Curtis Whitson Course held Virtually 26 June 2023

The course is recorded

Access to whitson*

Introduction

Knowledge Sharing Session Tomorrow!

Well Performance Consortium: Knowledge Sharing Session

27 June 2024 | 8 am - 11 am CST | Virtual

Mathias Carlsen, whitson

Industry Consortium Insights: Benchmarking BHP Calculations

Adam & Alfredo, Ovintiv

Importing Forecasts into whitson*

Donovan, Matt, Mike & Peter, Devon

Time-Lapse Geochemistry & Well Diagnostics to Understand Drainage and Opportunity for Infill Development in the Permian

Braden Bowie, APA

Applying Numerical RTA to Public Data

Craig Cipolla, HESS

Novel Well Design for Unconventionals: Augmented Drainage Development (ADD)

Graham Helfrick, whitson

10-11 am

Facilitating Nodal: 1 well, 3 interpreters

Jon Pratt, Devon

Gaurav Sharma, Crescent Point Energy

Nicole Bourdon, Coterra

Small Courses throughout the Year

- Half-day courses (4 hrs)
- Hands-on focus with software and theory
- 7 Different Virtual Courses, 8 am 12 pm CST
 - PVT & Phase Behavior 14 Feb 2024 Recording: <u>https://youtu.be/qxqzl8B_l2A</u> Slides: <u>https://shorturl.at/gzBNW</u>
 - Bottomhole Pressure Calculations 24 April 2024 Recording: <u>https://youtu.be/0pvojymb-5U</u> Slides: <u>https://shorturl.at/wLWZ9</u>
 - Analytical & Numerical RTA 26 June 2024 (TODAY)
 - Flowing material balance 21 Aug 2024
 - Nodal Analysis 2 October 2024
 - Well Tests (CPG & DFIT) 16 October 2024
 - DCA & Type Wells 4 December 2024

Send e-mail to <u>carlsen@whitson.com</u> if you haven't received the invite to the courses.

Need Course Certificate?

Contact carlsen@whitson.com

Rate Transient Analysis

Rate Transient Analysis

What we will Cover

- whitson⁺ and RTA basics
 - Login & Access
 - Workflow ("Clicking the buttons")

whitson

- General structure and functionality
- The course has an RTA Focus primarily
 - Classical RTA (Square root of Time Plot)
 - Numerical RTA ("Bowie Workflow")
 - Fractional RTA (Acuna Work)

We'll assume the inputs are correct (PVT, BHP, etc.)

Rate Transient Analysis (RTA) 1.01

Incorporates both fluid rates and flowing pressures

What is it used for?

Quantify productivity (LFP aka $A\sqrt{k}$) and contacted pore volumes (OGIP and OOIP)

- Well performance comparison
- Forecasting
- Completion effectiveness & frac optimization
- Production optimization / drawdown management
- Calibration / starting point for advanced simulation studies

Four "Buckets" of RTA

Diagnostics

• Flow regime identification

- Relative well performance normalized for difference in pressure drawdown
- ³ Quantifying A \sqrt{k} (aka LFP) and contacted pore volume (OOIP | OGIP)

Resolving physical parameters like x_f and perm

- Must be in full boundary
- Also need to know $N_{\rm f}\,and\,h$
- Fracture shape (rectangular vs non-uniform)

More advanced

"It is better to be roughly right, than precisely wrong"

- John Maynard Keynes

Flow Regimes 1.01

Infinite acting flow ends as pressure transient reaches one reservoir boundary

Transitional flow (period in between)

Boundary dominated flow starts when the wellbore pressure response is affected by *all* reservoir boundaries

What can be Derived "Uniquely" from RTA?

LFP (or A√k)

Observed during infinite-acting, linear flow

CONTACTED OOIP (or OGIP)

Observed during boundary dominated flow

Volume Resolved from RTA

IMPORTANT

There is a difference between the petrophysically mapped in-place volume (**grey**) and the volume resolved from RTA, i.e. the <u>contacted</u> pore volume* (**blue**).

*Also called stimulated rock volume (SRV) or drained rock volume (DRV)

Copyright © Whitson AS

Contacted Pore Volume (V_p)

All the below used interchangeably

 $V_{p} = HCPV/(1-S_{wi})$ $OOIP = HCPV/B_{oi}$ $OGIP = OOIPxR_{si}$ $OWIP = PVxS_{wi}/B_{w}$

How many boundaries?

1 boundary

1 dimensional model

How many flow regimes?

2 flow regimes

1. Infinite acting (IA)

2. followed by boundary dominated (BDF)

Copyright © Whitson AS

How many boundaries?

1 boundary

1 dimensional model

How many boundaries?

2 boundaries

2-dimensional model

How many flow regimes?

3 flow regimes

Infinite acting (IA) Transitional Flow Boundary dominated (BDF)

Copyright © Whitson AS

ENOUGH FLOW REGIMES ALREADY

JUST GET ON WITH THE FREAKIN' COURSE

ma

One more thing...

Observed Flow Regimes in Tight Unconventionals

- 1. Infinite acting flow for the entire observed history
- 2. Initially *infinite acting flow*, followed by *transitional flow* for the rest of the observed history
- 3. Initially *infinite acting flow*, followed by *transitional flow* and finally boundary dominated flow
- 4. Initially *infinite acting flow* followed by *boundary dominated flow* for the rest of the observed history
- 5. Transitional flow for the entire observed history
- 6. Initially *transitional flow* followed by *boundary dominated flow* for the rest of the observed history
- 7. Boundary dominated flow for the entire observed history

Sequence of Flow Regimes in Tight Unconventionals

- IA
- IA \rightarrow TF
- IA \rightarrow TF \rightarrow BDF
- IA \rightarrow BDF
- TF
- TF \rightarrow BDF
- BDF

JUST GET ON WITH THE FREAKIN' COURSE

makeameme.org

RTA -In a Nutshell

Different Types of RTA

Classical RTA

"Square Root of Time Plot"

Numerical RTA

"Bowie Workflow"

Fractional RTA

"Acuna"

Square Root of Time Plot

Square Root of Time Plot

Square Root of Time Plot – slope (m)

Square Root of Time Plot - telf

What does this lead to?

(1) Higher perm(2) Shorter fracture half length(3) More wells per section

Numerical RTA – Summary

- Horizontal flat line indicates infinite acting, linear flow
- Deviation below this line represents boundary dominated / transitional flow
- The magnitude of the flat line indicates
 the LFP

Numerical RTA – Summary

- A set of models are run where the size of the model is the only thing that changes
- Type curve closest to actual data represents contacted pore volume

Numerical RTA

URTeC 2967 (2020)

UNCONVENTIONAL RESOURCES TECHNOLOGY CONFERENCE

1

URTeC: 2967

Numerically Enhanced RTA Workflow - Improving Estimation Of Both Linear Flow Parameter And Hydrocarbons In Place

Braden Bowie*1, James Ewert2, 1. Apache Corporation, 2. IHS Markit.

Copyright 2020, Unconventional Resources Technology Conference (URTeC) DOI 10.15530/urtec-2020-2967

This paper was proposed for presentation at the Unconventional Resources Technology Conference hold in Austin, Teax, USA, 20-22 My 2000. The UTR-for Technical Program Committee accepted this presentation on the basis of information commission as no branct submitted by the anthref(). The committee accepted this presentation on the version of URTG does not examine the accent, relativity, criminalismo of any information Interim. All information is the responsibility of and, is subject to corrections by the anthref(). Any processo or entity that relates on any information Interim for the information of the temporal bility of and, is subject to corrections by the author(). Any processo or entry that relates on any information Outside from this paper does not their orm in it. The information is not does not necessarily referent responsion of URTsC is prohibited.

Abstract

Two common goals of Rate Transient Analysis (RTA) are the quantification of early time well performance using the Linear Flow Parameter (LTP), as well as Original Oi In Diace (ODP) volume being drained. These two parameters are essential for understanding the effects of completions, geology, and depletion which then advises different strategies for optimizing the economics of future development. This paper outlines limitations in the taditional RTA analysis of oil wells and proposes an improved workflow to better obtain values for LFP and OOIP.

A blind study of 10 Apache engineers was conducted to compare traditional methods with the new RTA workflow being proposed. The average error between engineers using inditional RTA methods exceeded 10% in some cases, while the use of the new proposed workflow yielded an average error of less than 10% In addition to the enhanced consistency, the results proved more accutate when compared to memicical models. An additional benefits infar values generated by the new proposed workflow could be taken directly into a numerical model without the need for parameter modification to obtain historical matches.

Introduction

One of the more commonly used methods for analyzing unconventional wells includes plotting the logarithm of rate vs. the logarithm of time (Wattenbarger et al. 1998). In this format wells in transient linear flow will exhibit a -1/2 slope. When the pressure transient reaches a boundary (usually from another fracture on the same well) it will transition into boundary dominated flow with a steeper production decline. An example of this is shown below on the left side of Figure 1.

Braden Bowie

James Ewert

Connecting the Dots ...

LFP

OOIP

Numerical RTA ... Inputs

PVT

Prod. Data

Rel. Perm

NOT measured or calculated

Fractional RTA

Problem

Model

Reality

Equally spaced

Uneven frac spacing

Courtesy: Jorge Acuna

Classical RTA vs "Fractional" RTA

Classical RTA: Solves only equally spaced fracture networks ($\delta = 0.5$), gives A \sqrt{k}

Fractional RTA: Solves for complex system of fractures (any value of δ), gives Ak^{δ}

"Generalized" LFP

$LFP = Ak^{\delta}$

Rate Normalized Pressure (RNP)

Physical Significance of Delta (δ)

Infinite acting, linear flow $-\delta = 0.5$

Transitional flow (period in between) – 0 < δ < 0.5

Boundary dominated flow – $\delta = 0$

*in material balance time

What can be Derived "Uniquely" from RTA? LFP & OOIP

Correlate with 1 yr cum

LFP = A√k

Observed during infinite-acting, linear flow

Correlate with EURs

OOIP = HCPV/B_o

Observed during boundary dominated flow

What is $A\sqrt{k}$ aka LFP?

$\mathbf{A}\sqrt{\mathbf{k}}$ is just the sideways "kh"

Courtesy: Sam Shoun

Linear Flow Parameter (LFP)

 $LFP = A\sqrt{k} = 4n_f x_f h\sqrt{k}$

Classical RTA

"Square Root of Time Plot" "Bowie Workflow"

≠

Numerical RTA

Fractional RTA

"Acuna"

LFP_{classical}

$$LFP_{numerical} \neq$$

whitson

RTA

Key Assumption: Symmetry of Element Model

"1-dimensional model" | Only one no-flow boundary

*SPE 184397, Steve Jones

Copyright © Whitson AS

The use of material balance time is common in the rate transient analysis.

Material balance time

- is a **superposition** time function
- converts variable rate data into an equivalent constant rate solution
- is rigorous for a **boundary dominated** flow regime
- works well for infinite acting data also, but is only an approximation (errors can be up to 20% for linear flow)

Mathematically, material balance time, MBT is expressed in:

$$t_c = \frac{Q(t)}{q(t)}$$

where Q(t) and q(t) are cumulative production and production rate at time t.

whitson

Rate Normalized Pressure (RNP) is very useful for production analysis where flowing pressures and rates change through time.

It is defined as the flowing pressure drop divided by rate.

$$RNP = rac{\Delta p}{q} = rac{p_i - p_{wf}}{q}$$

RTA Solution for Linear Flow (constant rate) 3 m_{CR}

https://manual.whitson.com/modules/well-performance/analytical_rta/

Pressure normalized rate is the inverse of rate normalized pressure.

Pressure normalized rate is very useful for production analysis where flowing pressures and rates change through time.

It is defined as the rate divided by flowing pressure drop.

$$PNR = rac{q}{\Delta p} = rac{q}{p_i - p_{wf}}$$

Classical RTA Dashboard

Derivatives & Integrals

Derivatives

"Derivative analysis amplifies the reservoir signal but also amplifies the noise"

Integrals

"Integral analysis reduces the noise, but also reduces the signal."

Numerical RTA ... Inputs

PVT Measured or calculated from readily available data

Prod. Data Measured or calculated from readily available data

Rel. Perm NOT measured or calculated from readily available data

whitson

Copyright © Whitson AS

Numerical RTA

Key Concepts & theory
Key Assumption: Symmetry of Element Model

"1-dimensional model" | Only one no-flow boundary

*SPE 184397, Steve Jones

Industry Standard Workflow

Source: https://www.sagawisdom.com/courses/rate-transient-analysis-rta

RTA

Square Root of Time

Single-phase Flow | Constant Bottomhole Pressures

Superposition Effects

Changing Rates & Pressures

Multi-Phase Flow + Superposition Effects

Same Infinite Acting Case, different p_{wf} profiles

RTA

Multi-Phase Flow + Superposition Effects

Deviation from straight line introduced when p_{wf} **<** p_{sat}

(1) Higher perm (2) Shorter fracture half length (3) More wells per section → Overcapitalization ...

RTA

Nothing to do with David Bowie, James Bowie or the Bowie Knife

Braden Bowie Reservoir Engineering Lead, Apache https://doi.org/10.15530/urtec-2020-2967

For any two wells*:

(1) with the same value of LFP, rate performance is identical during infinite-acting (IA) behavior

(2) with the same ratio LFP / OOIP, GOR and water cut behavior is identical for all times, IA and boundary dominated (BD)

(3) with the same values of LFP and OOIP, rate performance will be identical for all times, IA and BD

RTA

^{*}With the same (a) fluid initialization (GOR_i and S_{wi}) and (b) relative permeability relations, and (c) bottomhole pressure (BHP) time variation (above and below saturation pressure)..

Same LFP, same IA performance

RTA

Same LFP / OOIP ratio, same GOR

whitson

RTA

Same LFP and OOIP, same performance

1. Create a numerical model that is large enough to behave infinite acting (=large OOIP) for the entirety for the historical time.

Reservoir Model

Far to closest boundary

The "Bowie Workflow"

3. Calculate the ratio between the actual measured oil rates and infinite acting model oil rates: $r = q_{o,actual}/q_{o,IA}$ (alternative: $r = Q_{o,actual}/Q_{o,IA}$)

4. Calculate the daily "LFP" by multiplying the daily ratio r (Step 3) with the known LFP of the infinite acting, single fracture model (Step 1)

4. Calculate the daily "LFP" by multiplying the daily ratio r (Step 3) with the known LFP of the infinite acting, single fracture model (Step 1)

- 1. A horizontal flat line indicates infinite acting, linear flow
- 2. Deviation below this line represents boundary dominated / transitional flow
- 3. The magnitude of the flat line indicates the LFP

5. Repeat Step 1-2 for multiple, smaller OOIP volumes. This results in several "type curves" with each its own LFP / OOIP ratio.

6. Pick a "**Representative LFP**" based on the early time "LFP". Remember that a flat, horizontal line is expected during infinite acting behavior.

8. Pick the **OOIP** stem that matches the actual production data the best.

Numerical RTA – Summary

- A horizontal flat line indicates infinite acting, linear flow
- Deviation below this line represents boundary dominated / transitional flow
- The magnitude of the flat line indicates
 the LFP

Numerical RTA – Summary

- A set of models are run where the size of the model is the only thing that changes
- Type curve closest to actual data represents contacted pore volume

Connecting the Dots ...

Source: https://www.sagawisdom.com/courses/rate-transient-analysis-rta

RTA

Courtesy: Jorge Acuna

Classic RTA vs "Fractional" RTA

Classic RTA: Solves only equally spaced fracture networks ($\delta = 0.5$), gives A \sqrt{k}

Fractional RTA: Solves for complex system of fractures (any value of δ), gives Ak^{δ}

"Generalized" LFP

$\mathsf{LFP} = \mathsf{Ak}^{\delta}$

Copyright © Whitson AS

Pressure Normalized Rate (PNR) RTA d∕∕p $mt^{1-\partial} + b$ Δp

Physical Significance of Delta (δ)

Infinite acting, linear flow $-\delta = 0.5$

Transitional flow (period in between) – $0 < \delta < 0.5$

Boundary dominated flow – $\delta = 0$

*in material balance time

RTA

Rate Normalized Pressure (RNP)

RTA

Challenge to the Audience

Correlate δ to completion practices

 δ around 0.5 = high cluster efficiency

 δ far from 0.5 = poor cluster efficiency

RTA

Fractional + Numerical RTA

RTA

Well in Transitional Flow for Entire History

Limitations of Classical, Numerical RTA

NRTA Extended to Complex Fracture Systems

Key Definitions

 $LFP = 4n_f x_f h k^{\delta}$

$OOIP = \frac{2x_f Lh\varphi(1 - S_{wi})}{B_{ti}}$

Copyright © Whitson AS

LFP, **OOIP** and δ rate performance will be identical for all times

Same production during i) infinite acting (IA), ii) transitional and iii) boundarydominated flow (BDF)

*With the same (a) fluid initialization (GOR_i and S_{wi}) and (b) relative permeability relations, and (c) bottomhole pressure (BHP) time variation (above and below saturation pressure).

RTA

RTA

Example

Parameter	Unit	Case 1	Case 2	Case 3
δ	-	0.3	0.3	0.3
Vp	MMRB	14.25	14.25	14.25
OOIP	MMSTB	11.33	11.33	11.33
φ	fraction	0.05	0.10	0.20
h	ft	200	100	50
Lw	ft	10000	5000	20000
x _f	ft	400	800	200
Bo	RB/STB	1.26	1.26	1.26
k	md	2.00E-04	1.60E-03	1.28E-02
n _t	#	725	239	631
$LFP' = 4n_f h x_f k^{\delta} \phi^{1-\delta}$	ft md ^ŏ	2212809	2212809	2212809

Copyright © Whitson AS

Copyright © Whitson AS

PVTProd.DeltaData

Rel. Perm

NOT measured or calculated

Numerical Model

Reservoir Simulation & Forecasting

Creating a Numerical Model Realization

Numerical RTA Interpretation

Interpretations (?) Linear Flow Parameter, LFP = $A\sqrt{k}$ $ft^2md^{1/2}$ 306261 00IP OGIP 1741 MSTB 958 MMscf

Realization 1

Physical Assumptions (?) Matrix Porosity, φ Frac Height 63.37 0.052 Well Lateral Length Number of Fractures 10950 ft 1035 Matrix Permeability Fracture Half Length 20.86 nd 255.6

Realization 2

ft

ft

Realization 3

0

Physical Assumptions	\bigcirc			Physical Assumptions
Matrix Porosity, φ 0.052	0	Frac Height 50		Matrix Porosity, φ 0.052
Well Lateral Length 1095	ft	Number of Fractures		Well Lateral Length 5000
Matrix Permeability 21.06	nd	Fracture Half Length 3239.5	ft	Matrix Permeability 18.64

	Frac Height 40	ft
ft	Number of Fractures 500	
	Fracture Half Length	
nd	886.8	ft

Numerical RTA Interpretation

whitson

NUM

SENSOR

OPM FLOW

https://manual.whitson.com/modules/well-performance/reservoir-simulation/#21-gridding

Gridding and Numerical Dispersion

- Mix of logarithmic and uniform gridding.
- Numerical dispersion is an inherent reservoir simulation problem that causes computational results to be less accurate.
- When the simulation grids are coarse, numerical dispersion is an undesirable simulation artifact.
- Sufficient gridding is required for accurate results, but also slows down simulation runs. Hence, it's a fine balance between accuracy and practicality.

whitson

https://manual.whitson.com/modules/well-performance/reservoir-simulation/#21-gridding

Well Control – What does it mean?

Well Control: Use Oil Rate

Well Control: Use Gas Rate

Well Control: Use Water Rate

Well Control: Use Bottomhole Pressure

"There are two kinds of forecasters: those who don't know, and those who don't know they don't know."

- John Kenneth Galbraith

Forecast

Bottomhole Pressure

🕹 🐼 🗋

NUM

Software Basics

whitson*: Set Zoom to 70-80%

₩ whitson ⁺	× +						~	/	_	ð	×
\leftrightarrow \rightarrow C $$	https://internal.whitson.com/fields/2/projects/49/wells/241/pvt/fluid-definition	Q	Ŕ	☆	m	63	Ŧ	é	h D		
0 Fields 00 Projects	Whitson Field Project Well V Analysis Bakken + Stian-PhD-Project + Volatile-0il + Main				N	lew tab lew win	dow			Ctrl+ Ctrl+	+T +N
Wells	FLUID DEFINITION BLACK OIL TABLE EOS MODEL				Ν	lew Inco	ognito	window	v Ct	rl+Shift+	⊦N
Main Data & Models A PVT Production Data Production Data Analysis A	Reservoir Fluid Composition Image: Composition <thi< th=""><th></th><th></th><th></th><th>H D B</th><th>istory ownloa ookma</th><th>ıds rks</th><th></th><th></th><th>Ctrl</th><th>► +J</th></thi<>				H D B	istory ownloa ookma	ıds rks			Ctrl	► +J
Bottomhole Pressure					Z	oom		- 5	0%	+	11
Flowing Material Balance Analytical RTA Numerical RTA Numerical Model Nodel Analysis	Phase Envelope				P C F M	rint ast ind 1ore too	ols				+ P + F ▶
Multi-well Analysis					E	dit		Cut	Co	ру	Paste
문 Multi-well DCA / Type Well Diagnostic Plot	(Alternatively, CTRL	+"	:_"	-	S H	ettings elp					Þ
Advanced PVT & Phase Behavior Virtual PVT Lab Gas EOR PVT V 0 2073 - Whiteon AS All rinhts rese	on keyboard)				E	xit					
Type he	™ re to search 🛛 🛱 🧰 🛜 🤀 🔎 刘 💏 💶 📭 💁 隊 🚱 🙆 ∧ 🫥	•	E C	i ș		口")	د[]ے	ENG	5:35	PM	Ę

whitson+: Maximize Screen by "F11"

$oldsymbol{W}$ whitson ⁺	× +		-			`	/	_	đ	×
\leftrightarrow \rightarrow C $$	https://internal.whitson.com/fields/2/projects/49/wells/241/pvt/fluid-definition	Q		•	œ	Ŧ	<i>i</i>			:
00 Fields 000 Projects	Image: Stars-PhD-Project Well Image: Stars-PhD-Project <				\leftrightarrow \rightarrow	i	S 🕽	°F 🗭	?	
Normal Data & Mode Main Data & Mode Image: PVT Production Data & Image: Production Data &										
• 2023 - Whitson AS. All rights rese	nere to search	@	• 🗗 🕯	- (7,	口")	ells.	ENG NO	5:37 F 3/1/20	PM 023	3

whitson*: More Screen Real Estate

whitson*: More Screen Real Estate

© 2023 - Whitson AS. All rights reserved

whitson+: Navigation Panel

whitson*: Software Hierarchy

© 2023 - Whitson AS. All rights reserved

whitson+: Create Multiple Analyses for a Well

whitson+: Create Multiple Analyses for a Well

© 2023 - Whitson AS. All rights reserved

whitson+: Change Units

© 2023 - Whitson AS. All rights reserved

whitson*: Input Card

whitson+: Support Ticket

© 2023 - Whitson AS. All rights reserved

whitson+: Manual

© 2023 - Whitson AS. All rights reserved
Important Shortcut: Refresh

- Refresh shortcut: "CTRL + R"
- Use if you experience
 - Bad connection
 - The browser is "stuck"

Eagle Ford Workflow Example

SPE Data Repository Well #4 (Kite)

Download associated data here: https://manual.whitson.com/onboarding/mass-upload-examples/

Software – Important Notes

Click "F5" or "CTRL + R" if you experience issues (hard refresh)

Unconventional Reservoir Workflow

PVT ... Fluid Initialization

Use GOR method in **whitson**⁺ to predict fluid composition

- $R_s = 750 \text{ scf/STB} | B_o = 1.38 \text{ RB/STB}$
- Bubblepoint = 2875 psia

Undersaturated, black oil

PVT Assume solution GOR (R_s) = initial producing GOR (R_p) = 750 scf/STB

https://manual.whitson.com/modules/fluid-definition/#initial-gor

PVT ... Fluid Initialization

Use GOR method in **whitson**⁺ to predict fluid composition

- $R_s = 750 \text{ scf/STB} | B_o = 1.38 \text{ RB/STB}$
- Bubblepoint = 2875 psia
- Undersaturated, black oil

https://manual.whitson.com/modules/fluid-definition/#initial-gor

Flowing Bottomhole pressure (p_{wf})

 Assume bottomhole pressure provided in the SPE data repository dataset is correct

(... even though it's calculated)

 Smooth the pressures graphically in whitson⁺

whitson

2

Multiphase Flowing Material Balance

OOIP = 700 MSTB

 $\mathbf{MBT}_{\mathbf{m}}$

Source: https://manual.whitson.com/modules/flowing-material-balance/multiphase/

4

 $LFP_{analytical} \leq LFP_{numerical}$

4

Classical RTA - Pick LFP

$LFP = 24000 \text{ ft}^2 \text{ md}^{1/2}$

Fractional RTA - δ

Rate Normalized Pressure RESET SLOPE

😳 ※ 또 🐼 🗋

Numerical RTA – Pick LFP & OOIP

$LFP = 50000 \text{ ft}^2 \text{ md}^{1/2}$ OOIP = 700 MSTB

whitson

Time

Check out more here: https://youtu.be/i4tS_0kX7qQ?t=13246

4

Analytical vs Numerical RTA

$$LFP_{analytical} = 24,000 \text{ ft}^2 \text{ md}^{1/2} \le LFP_{numerical} = 50,000 \text{ ft}^2 \text{ md}^{1/2}$$

Numerical Model – History Match

Numerical Model – History Match

5

Numerical Model – History Match + Forecast

whitson

5

whitson

We support energy companies, oil services companies, investors and government organizations with expertise and expansive analysis within PVT, gas condensate reservoirs and gas-based EOR. Our coverage ranges from R&D based industry studies to detailed due diligence, transaction or court case projects.

We help our clients find best possible answers to complex questions and assist them in the successful decisionmaking on technical challenges. We do this through a continuous, transparent dialog with our clients - before, during and after our engagement.

The company was founded by Dr. Curtis Hays Whitson in 1988 and is a Norwegian corporation located in Trondheim, Norway, with local presence in USA, Middle East, India and Indonesia.

Global	Asia-Pacific	Middle East	Americas
Curtis Hays Whitson, PhD curtishays@whitson.com	Kameshwar Singh, PhD singh@whitson.com	Ahmad Alavian, PhD alavian@whitson.com	Mathias Carlsen, MSc carlsen@whitson.com
Whitson AS	Whitson USA LLC		
Whitson AS Skonnertvegen 7, 7053 Trondheim, Norway	Whitson USA LLC3410 W Dallas St.Houston, TX 77019, US		

Relative Permeability: Cheat Sheet

^[1] GOR = gas-oil ratio = q_0/q_0

- ^[2] k_{rwro} : Relative perm of water at $S_w = 1 S_{orw}$, $S_q = 0$

- ^[3] Baker is used for three-phase relative perm.

^[4] These are rules of thumb and simplifications. Deviations might occur.

^[5] Rel. perm parameters such as k_{roro} S_{wc}, S_{orc} n_w n_{ow} doesn't have a big, or simple, relationship with WOR (and water cut) and is excluded from the overview.

Relative Permeability: Cheat Sheet

whitson

^[1] WOR = water oil ratio = q_w/q_o | water cut = $q_w/(q_w+q_o)$

- ^[2] k_{rwro} : Relative perm of water at $S_w = 1 S_{orw}$, $S_a = 0$
- ^[2] k_{rocw} : Relative perm of oil at $S_w = S_{wc}$, $S_q = 0$.
- ^[2] k_{raro} : Relative perm of gas at $\tilde{S}_w = \tilde{S}_{wc}$, $\tilde{S}_o = S_{org}$

^[3] Corey model is assumed here. Baker is used for three-phase relative perm.

^[4] These are rules of thumb. Deviations might occur.

^[5] Rel. perm parameters such as k_{raro}, S_{ac}, S_{ora}, n_{og}, n_q doesn't have a big, or simple, relationship with WOR (and water cut) and is excluded from the overview.

^[6] For reservoir oils, k_{raro}, S_{ac}, S_{ora}, n_{oa}, n_o only have an impact on WOR below the bubblepoint, p_b. Hence, if WOR changes are observed below p_b these are helpful.

Worked Example

Worked Example

Worked Example

Discussion

Well Performance Evidence of Low F_{cd}

Well Performance Evidence of Low F_{cd}

Well Performance Evidence of Low F_{cd}

Copyright © Whitson AS

Discussion

Pressure Dependent Permeability

Well Performance Evidence of Pressure Dep. Perm

Well Performance Evidence of Pressure Dep. Perm

DEMO

Analytical RTA w/ Total Reservoir Fluids

DEMO

Derivative Analysis