# FMB in whitson<sup>+</sup>

UPD

Mathias Carlsen | Mohamad Dahouk | Curtis Whitson Course held Virtually 21 August 2024





## Access to whitson<sup>+</sup>



# Introduction

# **Small Courses throughout the Year**

Half-day courses (3-4 hrs), hands-on focus with software and theory

✓ 14 Feb: PVT & Phase Behavior in whitson+
■ Recording: <a href="https://youtu.be/m7EISdxyZ2U">https://shorturl.at/gzBNW</a>

✓ 24 April: Bottomhole Pressure in whitson+
■ Recording: <u>https://youtu.be/0pvojymb-5U</u>, Slides: <u>https://shorturl.at/wLWZ9</u>

26 June: Analytical & Numerical RTA in whitson+
Recording: https://youtu.be/A2Ov8P6GrEI is Slides: <a href="https://shorturl.at/wTrGw">https://shorturl.at/wTrGw</a>

✓ 21 August: Flowing Material Balance (FMB) in whitson+

✓ 02 October: Nodal Analysis in whitson+

✓ 16 October: Well tests (CPG & DFIT) in whitson+

✓ 04 December: DCA & Type Well in whitson+

Send e-mail to <u>carlsen@whitson.com</u> if you haven't received the invite to the courses.

# **Need Course Certificate?**

Contact dahouk@whitson.com





# **General Information**

- 3–4-hour course
- Interactive class
- Ask questions drive the course emphasis
  - In chat or unmute to speak (mute when not talking <sup>(i)</sup>)
- Will send out all digital material after class
- Some content in this slide deck is meant for presentation purposes, while some parts are meant for reference.

## What we will Cover

- whitson<sup>+</sup> and multiphase FMB basics
  - Login & Access
  - Workflow ("Clicking the buttons")



- General structure and functionality
- The course has an FMB Focus primarily
  - Multiphase FMB
  - Recovery Factor Analysis

We'll assume the inputs are correct (PVT, BHP, etc.)



## Flowing Material Balance (FMB) 1.01

#### What is it used for?

Obtain estimates of drained reservoir volume.







# *"It is better to be roughly right, than precisely wrong"*

- John Maynard Keynes

# **Unconventional Reservoir Workflow**





# Flow Regimes 1.01

Infinite acting flow ends as pressure transient reaches one reservoir boundary

## Transitional flow (period in between)

# **Boundary dominated flow** starts when the wellbore pressure response is affected by *all* reservoir boundaries

# What can be Derived "Uniquely" from RTA?

# LFP (or A√k)

Observed during infinite-acting, linear flow

CONTACTED OOIP (or OGIP)

Observed during boundary dominated flow



## **Volume Resolved from RTA**

#### How much pore volume is a well "seeing" / draining????



#### What should we call this volume?

- Contacted pore volume (or contacted OOIP/OGIP)
- Stimulated rock volume
- Other (e.g., drained rock volume, use all interchangeably)

# Contacted Pore Volume (V<sub>p</sub>)

All the below used interchangeably

 $V_p = HCPV/(1-S_{wi})$   $OOIP = HCPV/B_{oi}$   $OGIP = OOIPxR_{si}$  $OWIP = PVxS_{wi}/B_w$ 





# How many boundaries?

#### 1 boundary



#### **1 dimensional model**

# How many flow regimes?

#### 2 flow regimes



#### 1. Infinite acting (IA)

#### 2. followed by boundary dominated (BDF)

#### Copyright © Whitson AS

# How many boundaries?

#### 1 boundary



#### **1 dimensional model**

# How many boundaries?

#### 2 boundaries



#### **2-dimensional model**

# How many flow regimes?

#### 3 flow regimes



# Infinite acting (IA) Transitional Flow Boundary dominated (BDF)

#### ENOUGH FLOW REGIMES ALREADY



#### JUST GET ON WITH THE FREAKIN' COURSE

makeameme.org

# Multiphase FMB -Crash Course

## **Problem**

Model

#### Reality





# **Multiphase Flowing Material Balance**

# 2020: New FMB method

✓ No rel. perms required

✓ Geometry agnostic

Outputs contactedOOIP (or OGIP)





# **Multiphase Flowing Material Balance**

- ✓ No rel. perms required
- ✓ Outputs OOIP
- ✓ Geometry agnostic
- Assumes boundary dominated flow
- ✓ Bound RTA analysis





## Multiphase FMB ... Inputs







**PVT** 

Rates





# Multiphase FMB Eq.

**Governing equation** 

# $\rho = \frac{m}{V}$



# Multiphase FMB Eq.

**Governing equation** 



#### Copyright © Whitson AS

# Recovery Factor Analysis – Crash Course

## **Multiphase FMB**

How much pore volume is a well "seeing" / draining????



## What else would you need?





Theory

# Multiphase Flowing Material Balance

without Relative Permeability

# **Multiphase Flowing Material Balance**



- Developed by Leslie Thompson & Barry Ruddick (2017-2022)
- Plotting technique to analyze multiphase production data
- Outputs  $V_p$ , OOIP, OGIP, OWIP
- Requires PVT, production data, bottomhole pressures and initial reservoir conditions

Source: Thompson & Ruddick (2022), "Multiphase Flowing Material Balance Without Relative Permeability Curves", URTeC: 3718045

#### Copyright © Whitson AS
### **Multiphase Flowing Material Balance**

- ✓ No rel. perms required
- ✓ Outputs OOIP
- ✓ Geometry agnostic
- Assumes boundary dominated flow



whitson

### ✓ Bound RTA analysis

Source: Thompson & Ruddick (2022), "Multiphase Flowing Material Balance Without Relative Permeability Curves", URTeC: 3718045

### Multiphase FMB Eq.





Source: Thompson & Ruddick (2022), "Multiphase Flowing Material Balance Without Relative Permeability Curves", URTeC: 3718045

### **Multiphase FMB**

Define insitu mixture density as

$$\beta = 5.615\rho_{osc}\left(\frac{S_o}{B_o} + \frac{r_v S_g}{B_g}\right) + 1000\rho_{gsc}\left(\frac{R_s S_o}{B_o} + \frac{S_g}{B_g}\right) + 5.615\rho_{wsc}\frac{S_w}{B_w}$$

Density Change

$$\triangle \beta = \beta_i - \beta$$

#### Mass Rate

$$\dot{m}(t) = 5.615\rho_{osc}q_o(t) + \frac{1000\rho_{gsc}q_g(t)}{5.615\rho_{wsc}q_w(t)} + 5.615\rho_{wsc}q_w(t),$$

Mass material balance time

$$MBT_{M} = \frac{\int_{0}^{t} \dot{m}(t) dt}{\dot{m}(t)} = \frac{M_{T}(t)}{\dot{m}(t)}$$

Source: Thompson & Ruddick (2022), "Multiphase Flowing Material Balance Without Relative Permeability Cu



### **Multiphase FMB**



$$\frac{\beta_{i} - \beta_{well}}{\dot{m}\left(t\right)} = \frac{1}{V_{p}}MBT_{M} + \frac{1}{b_{M}}$$

Practice

## Multiphase Flowing Material Balance

without Relative Permeability

### **Multiphase FMB – Three Key Periods**

**Period 1: Before**  $p_{wf} < p_{sat}$  ("single-phase flow")



### **Multiphase FMB – Three Key Periods**

Period 2: Transition period due to multiphase flow effects (gas enters the system, and gas is more compressible)



### **Multiphase FMB – Three Key Periods**

#### **Period 3: Second stabilized slope**



### Multiphase FMB: Several Slopes

When working with real data – which slope to pick?



### Multiphase FMB: Several Slopes

When working with real data – which slope to pick?



### MBT<sub>m</sub>

Pick the shallowest observed slope i.e., the "largest pore volume observed".

Time

### Multiphase FMB: Buildups Present

When working with buildup data – which slope to pick?



**MBT**<sub>m</sub>

Time

whitson

If buildup data is present, adjust the slope until it just honors the buildup data. This slope might be shallower (i.e., "larger pore volume") than what the depletion data only suggests.

#### Copyright © Whitson AS

### **Multiphase FMB: Frac hits present**



If a frac hit ("bash") is observed, this part of the data should be ignored.

### Multiphase FMB: Still Infinite Acting



 $OOIP_{A} = 500 \text{ MSTB}$  $OOIP_{B} = 2000 \text{ MSTB}$  $OOIP_{C} = 3400 \text{ MSTB}$  $OOIP_{C} = 3400 \text{ MSTB}$ 

### Conclusion

- Pick the shallowest observed slope i.e., the "largest pore volume observed".
- If buildup data is present, adjust the slope until it just honors the buildup data. This slope might be shallower (i.e., "larger pore volume") than what the depletion data only suggests.
- If a frac hit ("bash") is observed, this part of the data should be ignored.
- If well is still infinite acting (IA), multiphase FMB provides a conservative estimate of pore volume (OOIP | OGIP | OWIP). Numerical RTA can be used to evaluate if the well is still infinite acting.

Theory

Recovery Factor Analysis

### **Multiphase FMB**

How much pore volume is a well "seeing" / draining????



### What else would you need?





whitson

Copyright © Whitson AS

### What else would you need?

# $EUR_{o} = OOIP \times RF_{o}$ $EUR_{a} = OGIP \times RF_{a}$ $EUR_{w} = OWIP \times RF_{w}$

### What else would you need?



#### **Calculate Recovery Factors from Material Balance?**



#### **Calculate Recovery Factors from Material Balance?**

$$\mathsf{RF}_{@abandonement} = \int (\mathsf{PVT}_{@abadonment}, \mathsf{OGR}_{cum}, \mathsf{WGR}_{cum})$$

### **RF Analysis**



### **CGR Forecast**



### Why no need for Relative Perm?

**Short Answer** 



### Why no need for Relative Perm?

**Short Answer** 



#### Copyright © Whitson AS

### **RF Analysis in whitson<sup>+</sup>**

**Numerical Model** 

**Simple Material Balance** 

**Recovery Factor Analysis** 







# Same RF<sub>o</sub> | RF<sub>g</sub> for the same abandonment pressure and cumulative GOR (or CGR)



## Example 1 Permian Case Study

### **Permian Parent Production**



### **Quick Well Facts**

- First well analyzed using MFMB analysis
- Initially saturated volatile oil well
- Downhole Pressure Gauge
- Approximately 5 years of production
  - Approximately 2 years as a parent before infill wells were drilled and fractured
  - 2 subsequent workovers
- Quality of water production data questionable at times
- Initial water saturation assumed to be 30%

### **Early Production**



Initial Analysis  $-S_{wi} = 30\%$ 

### **Initial MFMB Analysis**



### **Initial Analysis - MFMB**



### Initial Analysis – Average Pressure



### **Initial Analysis – Water Saturation**



#### Copyright © Whitson AS

### **Initial Analysis - Comments**

- Analysis seems consistent *except* for huge change in water saturation.
- Two paths forward:
  - Confer with team to re-evaluate initial water saturation.
  - Perform the analysis without water.

### Water Saturation (re-)evaluation

- Where did the fracs penetrate?
- Which water producing intervals should be included in the tank?
- Initial water saturation was reset to 70%.


#### Initial Analysis $-S_{wi} = 70\%$



#### Re-evaluation $-S_{wi} = 70\%$



#### Initial Analysis – No Water

- Mass of water in tank remains constant
- No water expansion
- Water saturation will only change as a result of rock compressibility
- Provides most conservative estimate of hydrocarbon in place

#### **MPFMB – No Water**



#### **Entire Production Period**



#### **Average Pressure**



#### **Entire Production Period**



### 1 Average & Wellbore MFMB Plots not Parallel?

- Average plot too steep? Rock compressibility too large
- Average plot too shallow? Rock compressibility too small



#### Entire Production Period – No $c_f$



#### Summary

| Case            | Pore Volume (MRB) | OOIP (MSTB) | OGIP (MMSCF) |
|-----------------|-------------------|-------------|--------------|
| $S_{wi} = 30\%$ | 9588              | 2432        | 8088         |
| $S_{wi} = 70\%$ | 21341             | 2320        | 7715         |
| No Water        | 19608             | 2131        | 7088         |

1

# Example 2 Refracs in Eagle Ford

# Synthetic Example

## **Simulated Case**

2



\*URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

# **Simulated Case**



\*URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

## **Simulated Case**



23 2 🖸 🗋



\*URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

# Eagle Ford Example

#### **Eagle Ford Example**



URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

#### MFMB Plot – Three Key Periods



# $\mathbf{MBT}_{\mathbf{m}}$

2

#### Multiphase FMB – Three Key Periods

**Period 1: While**  $p_{wf} > p_{sat}$  ("single-phase flow")



Period 2: Transition period due to multiphase flow effects (gas enters the system, and gas is more compressible)



#### Multiphase FMB – Three Key Periods

#### **Period 3: Second stabilized slope**



2

## **Three Scenarios**

1. Early OOIP < Late OOIP -> Still infinite acting (IA) early 2. Early OOIP = Late OOIP -> Contacted everything early 3. Early OOIP > Late OOIP -> Loss of surface area with time (or strong geomechanical effects)

#### **Field Example**



URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

## 2 Field Example: Successful Refrac



#### Early time OOIP using the first 15 days after refrac!

URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

#### Copyright © Whitson AS

#### 2 Field Example: Unsuccessful Refrac



#### Early time OOIP using the first 15 days after refrac!

URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford



URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

## 2 Increase in EUR vs Increase in OOIP



URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

### Summary

- 1. Early time diagnostic of refrac
  - -> 15 first days after refrac
- 2. Accounts multiphase flow & superposition
  - -> Refracs are done below p<sub>sat</sub>
- 3. Quantifies added reserves
  - -> ... vs just is accelerating production

URTeC: 3865157 - Use of Multiphase Flowing Material Balance (FMB) to evaluate Refracs in the Eagle Ford

# Example 3 MFMB on Well Groups in the Permian

# Synthetic Example

3

# Parent Infill 2



## Infill 1

# ВНР õ Rate

# **Infill Drilling**

## Time

# <sup>3</sup> Density distribution @ 730 days





### 3 Alternative 1: Sum Individual Analysis



#### **3** Alternative 1: Sum Individual Analysis

#### Parent Infill 1 Infill 2



 $V_p = 4.5 \text{ MMRB}$   $V_p = 3.7 \text{ MMRB}$   $V_p = 4.3 \text{ MMRB}$  $V_{p,tot} = 12.4 \text{ MMRB}$ (3% off)

Create a "pseudo-well"

1. Rates: sum for all three wells

2. BHPs: mass-weighted average

Else use the method as usual, now for a single pseudo-well
### Alternative 2: "Pseudowell"





3

### Alternative 2: "Pseudowell"

| ≡ whi        | tson <sup>+</sup> whitCon 2023 • Data •       |                                                   | S 🗄                      | 🗈 °F 🔽 🖓 👐          |
|--------------|-----------------------------------------------|---------------------------------------------------|--------------------------|---------------------|
| Well Ov      | verview Search Wells / UWIs                   | RUN DELETE MOVE COPY EXPORT GROUP CREATE PSEUDO W | ELL ADD WELL MASS UPLOAD | ATTRIBUTES EDIT ALL |
| ✓            | Well Name                                     | UWI                                               | Scenario Count           | Group               |
|              | SPE-DATA-REPOSITORY-DATASET-1-WELL-27-OSTRICH | SPE-DATA-REPOSITORY-DATASET-1-WELL-27-OSTRICH     | 0                        | :                   |
|              | SPE-DATA-REPOSITORY-DATASET-1-WELL-28-EMU     | SPE-DATA-REPOSITORY-DATASET-1-WELL-28-EMU         | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-29-DUCK    | SPE-DATA-REPOSITORY-DATASET-1-WELL-29-DUCK        | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-30-HERON   | SPE-DATA-REPOSITORY-DATASET-1-WELL-30-HERON       | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-31-STORK   | SPE-DATA-REPOSITORY-DATASET-1-WELL-31-STORK       | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-32-SWAN    | SPE-DATA-REPOSITORY-DATASET-1-WELL-32-SWAN        | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-33-PARROT  | SPE-DATA-REPOSITORY-DATASET-1-WELL-33-PARROT      | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-34-CRANE   | SPE-DATA-REPOSITORY-DATASET-1-WELL-34-CRANE       | 0                        | :                   |
| ~            | SPE-DATA-REPOSITORY-DATASET-1-WELL-35-IBIS    | SPE-DATA-REPOSITORY-DATASET-1-WELL-35-IBIS        | 0                        | :                   |
| $\checkmark$ | SPE-DATA-REPOSITORY-DATASET-1-WELL-36-EGRET   | SPE-DATA-REPOSITORY-DATASET-1-WELL-36-EGRET       | 0                        | 1                   |

### ✓ All wells need to have PVT and MFMB run

3

# Permian Example

3

# **Permian Case Study**



\*URTeC: 3870320: Multiphase Flowing Material Balance for Well Groups

### **Alternative 1**



\*URTeC: 3870320: Multiphase Flowing Material Balance for Well Groups

## **Alternative 2**



\*URTeC: 3870320: Multiphase Flowing Material Balance for Well Groups

# Comparison

| Well         | Pore Volume (MMRB) |
|--------------|--------------------|
| F-1 (Parent) | 26.4               |
| F-2          | 19.7               |
| F-3          | 22.5               |
| F-4          | 14.1               |
| F-5          | 13.5               |
| F-6          | 20.4               |
| F-7          | 14.8               |
| F-8          | 20.5               |
| Sum          | 151.9              |
|              |                    |
| Pseudowell   | 155.4              |

\*URTeC: 3870320: Multiphase Flowing Material Balance for Well Groups

# Example 4 Frac Hits

### Problem Statement Pore Volume Reduction after Frac Hit? Archaeopteryx<sup>[1]</sup>





### **Pore Volume Reduction~36-37%**

### Multiphase FMB -Instantaneous Approach

### Multiphase FMB -Integral Approach



# **Comparison to Other Techniques**



Pore



# What about Dry Gas FMB?

- You can still use the MFMB method for a dry gas
- That said, the "dry gas" (Agarwal) FMB is also in whitson\*
- All concepts are the same.
  - There is one practical difference, i.e. that it's an iterative method
- I'll demo it for reference



## **Effect of Pressure Dependent Permeability?**





# **Effect of Pressure Dependent Permeability?**

- Delays the time to reach boundary dominated flow
- Delays the time to see the correct contacted pore volume



### Without Matrix Gamma

### With Matrix Gamma

whitson

#### Copyright © Whitson AS

# **Effect of Pressure Dependent Permeability?**

Why doesn't the multiphase FMB method require inputted pressure dependent permeability (if relevant)?

"All transport dependent terms (permeability, relative permeability, etc.) are built in to the rates. They never appear explicitly."

Leslie Thompson





# Software Basics

### whitson\*: Set Zoom to 70-80%

| ₩ whitson <sup>+</sup>                                                                                                                                                                                                                          | × +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |            |    |      |               |                            | ,          | ~     | -     | ٥            | ×                      |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|----|------|---------------|----------------------------|------------|-------|-------|--------------|------------------------|---|
| $\leftrightarrow$ $\rightarrow$ C $$                                                                                                                                                                                                            | https://internal.whitson.com/fields/2/projects/49/wells/241/pvt/fluid-de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | efinition 0            | Q          | B  | ☆    | m             | 65                         | Ŧ          | ø     | *     |              |                        |   |
| oo Fields                                                                                                                                                                                                                                       | ≡     whitson <sup>+</sup> Field     Project     Well     ▼     Analysis       Bakken ▼     Stian-PhD-Project     ▼     Volatile-Oil     ▼     Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |            |    |      | N             | ew tab                     | dow        |       |       | Ctrl<br>Ctrl | +T<br> +N              |   |
| Wells                                                                                                                                                                                                                                           | FLUID DEFINITION BLACK OIL TABLE EOS MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |            |    |      | N             | ew Inco                    | ognito     | windo | w C   | Ctrl+Shift   | :+N                    |   |
| PVT     Production Data Production Data Analysis                                                                                                                                                                                                | Reservoir Fluid Composition       Image: Image |                        |            |    |      | H<br>D<br>B   | istory<br>ownloa<br>ookmai | ads<br>rks |       |       | Ctr          | ∎<br>L+ln              | * |
| Orac         Decline Curve Analysis           Image: Comparison of the curve Analysis         Image: Curve Analysis           Image: Curve Analysis         Image: Curve Analysis           Image: Curve Analysis         Image: Curve Analysis | Dhase Envelope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |            |    |      | Z             | oom                        |            | -     | 50%   | +            | 11                     |   |
| Flowing Material Balance     Analytical RTA     Numerical RTA     Numerical Model                                                                                                                                                               | Initial Reservoir Conditions     Separator Conditions     Ortical Point     Dewpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 2          |    |      | Pi<br>C<br>Fi | rint<br>ast<br>nd          |            |       |       | Ctr<br>Ctr   | +P<br><sup>-</sup>  +F |   |
| Nodal Analysis Multi-well Analysis                                                                                                                                                                                                              | 7000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Click here             |            |    |      | N<br>E¢       | lore too<br>dit            | ols        | Cut   | С     | ору          | Paste                  | * |
| 문 Multi-well DCA                                                                                                                                                                                                                                | 6000 -<br>(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Alternatively, CTRL + |            | _" |      | Se<br>H       | ettings<br>elp             |            |       |       |              | )                      | * |
| Advanced PVT & Phase Behavior A<br>Virtual PVT Lab V<br>Gas EOR PVT V                                                                                                                                                                           | 2000<br>2000<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on keyboard)           |            |    |      | E             | kit                        |            |       |       |              |                        |   |
| © 2023 - Whitson AS. All rights rese                                                                                                                                                                                                            | rved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |    |      |               |                            |            |       |       |              |                        | • |
| 📕 🔎 Type h                                                                                                                                                                                                                                      | ere to search 🛛 🛱 📻 🧑 🔑 🔎 刘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i 🖈 🐢 💶 🔞 🕟 🚺 🗸 🕳      | <b>(</b> ) | C. | ļ ÿ_ | (i.           | 口")                        | د[]،       | ENG   | i 5:3 | 35 PM        | 5                      |   |

### whitson+: Maximize Screen by "F11"

| ₩ whitson <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | × +                                                                                                     |   |   |   |                |                    | $\sim$    | _              | ٥               | ×  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|---|---|----------------|--------------------|-----------|----------------|-----------------|----|
| $\leftrightarrow$ $\rightarrow$ C $\bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | https://internal.whitson.com/fields/2/projects/49/wells/241/pvt/fluid-definition                        | Q | Ŕ | ☆ | <b>•</b>       | Ŧ                  | ø         | *              |                 |    |
| o°o Fields<br>o°o Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ■ whitson <sup>+</sup> Field Project Well V Analysis Bakken - Stian-PhD-Project - Volatile-Oil - Main - |   |   |   | ÷              | $\rightarrow i$    | \$        | Ĵ°F            | Ø               | SU |
| Wells         Main Data & Mode         Image: Second | <figure></figure>                                                                                       |   |   |   |                |                    |           |                |                 |    |
| Type ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ere to search 🗮 📑 🕵 🤁 🔎 刘 🔹 💶 🕒 💁 🚺 🕟 🙆 🗠 🧃                                                             | 9 |   | Ÿ | <i>(</i> . ()) | <sup>در</sup> ائ ( | EN(<br>NC | G 5:3<br>D 3/1 | 37 PM<br>1/2023 | 3  |

### whitson\*: More Screen Real Estate



### whitson\*: More Screen Real Estate



#### © 2023 - Whitson AS. All rights reserved

## whitson+: Navigation Panel



### whitson\*: Software Hierarchy



#### © 2023 - Whitson AS. All rights reserved

## whitson<sup>+</sup>: Create Multiple Analyses for a Well



## whitson<sup>+</sup>: Create Multiple Analyses for a Well



#### © 2023 - Whitson AS. All rights reserved

### whitson+: Change Units



#### © 2023 - Whitson AS. All rights reserved

### whitson+: Input Card



## whitson\*: Support Ticket



© 2023 - Whitson AS. All rights reserved

### whitson\*: Manual



#### © 2023 - Whitson AS. All rights reserved

# whitson+: Zooming Plots



#### © 2023 - Whitson AS. All rights reserved

#### Copyright © Whitson AS

### **Important Shortcut: Refresh**

• Refresh shortcut: "CTRL + R"

- Use if you experience
  - Bad connection
  - The browser is "stuck"





#### REMINDER

## MFMB Plot – Three Key Periods



# $\mathbf{MBT}_{\mathbf{m}}$

#### Copyright © Whitson AS

REMINDER

## Multiphase FMB – Three Key Periods

**Period 1: While**  $p_{wf} > p_{sat}$  ("single-phase flow")





Period 2: Transition period due to multiphase flow effects (gas enters the system, and gas is more compressible)



REMINDER



### Multiphase FMB – Three Key Periods

### **Period 3: Second stabilized slope**


#### Practice

# Multiphase FMB & Recovery Factors in whitson<sup>+</sup>

## **Multiphase FMB**

#### FLOWING MATERIAL BALANCE RECOVERY FACTOR ANALYSIS



#### whitson

## **RF Analysis in whitson<sup>+</sup>**

FLOWING MATERIAL BALANCE RECOVERY FACTOR ANALYSIS



whitson

#### whitson

We support energy companies, oil services companies, investors and government organizations with expertise and expansive analysis within PVT, gas condensate reservoirs and gas-based EOR. Our coverage ranges from R&D based industry studies to detailed due diligence, transaction or court case projects.

We help our clients find best possible answers to complex questions and assist them in the successful decisionmaking on technical challenges. We do this through a continuous, transparent dialog with our clients - before, during and after our engagement.

The company was founded by Dr. Curtis Hays Whitson in 1988 and is a Norwegian corporation located in Trondheim, Norway, with local presence in USA, Middle East, India and Indonesia.

| Global                                                   | Asia-Pacific                                          | Middle East                               | Americas                                    |
|----------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| Curtis Hays Whitson, PhD curtishays@whitson.com          | Kameshwar Singh, PhD<br>singh@whitson.com             | Ahmad Alavian, PhD<br>alavian@whitson.com | Mathias Carlsen, MSc<br>carlsen@whitson.com |
|                                                          |                                                       |                                           |                                             |
| Whitson AS                                               | Whitson USA LLC                                       |                                           |                                             |
| Whitson AS<br>Skonnertvegen 7, 7053<br>Trondheim, Norway | Whitson USA LLC3410 W Dallas St.Houston, TX 77019, US |                                           |                                             |

### whitson