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Flow Regimes Decline Curve Analysis (DCA)

Infinite acting flow, often referred to as transient flow, is the flow regime that ends as the pressure transient reaches one
reservoir boundary.
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b-factor Rules of Thumb
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and rates change through time. consistent alternative.

where flowing pressures and rates
] change through time. It is defined
T g e as the rate divided by flowing

pressure drop.

It is defined as the flowing
pressure drop divided by rate.
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Pseudo-Pressure Flowing Gas FMB Multiphase FMB

o
Compared to liquids, gas compressibility, density, and viscosity vary Mate rlal A (t) 5, _ B
w 1~ Mwell

§igniﬁpantly with pressure, which is why pseudq-pressure .is jntroduced to = Mipss t + bpss _ 1 MBT, + L
linearize gas flow equations and express them in a form similar to those for B a I a nce F M B g (¢) m (t) Vo b
incompressible fluids.
bi The work presented by Palacio and Blasingame The multiphase FMB method proposed by
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Real gas pseudo-pressure Pp = Pp, — Ppwf — —Z P Flowing material balance is a diagnostic and (1993) involves plotting rate-normalized Thompson & Ruddick (2022) estimates
drop defined as Puf g analvtical method used to estimate the pseudopressure vs. material balance pseudotime contacted pore volume without needing relative
To account for pressure- P pk (p) y : (tna). During pseudosteady state flow, this results permeabilities. All transport-related terms
. . _ m contacted pore volume (V,)—essentially the . : ) : . . - . .
dependent permeability, this Pp = 2 ——Z—dp “size of the tank’, using only production and in a straight line with slope inversely proportional (permeability, relative permeability, and pressure-
is defined as: 0 g ’ g only to the contacted pore volume. The method is dependent permeability) are built into the rates
pressure data. . : : . . 7 .
iterative, so the points on the diagnostic plot and never appear explicitly, eliminating the need
Rate Normalized Pseudo Pressure Normalized Rate TELLLLEL Assumes that the reservoir is in boundary adjust as the interpretation is refined. for separate inputs.
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] ot ) A key difference between FMB and RTA is that
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RTA Basics Classical RTA Numerical RTA Fractional RTA
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RTA can be used to quantify the linear flow parameter B Puf = mCR\/Z —+ b/ L FP —_— 4n X h1 / k \é\;?&iilsa:sécraelszﬁgss iI|\:/|?>S=f(X\/ekCtJ a("g f%agfd fracture
(LFF, also known as Avk) and the contacted pore o q_o o f f Fractional RTA (Acuna, 2020) solves for complex system
volume (Vp) This is the constant rate solution. The constant pressure solution is 11/2 larger! of fractures and resolves LFP = Ak6 (any value of 8)
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Po(ign\t,ifjfndes (ofg'g,,,) Quantff%?nuﬂ;% ';g\lf\,"dary effects, analytical solutions break down (Jones, 1985). '
The only viable approach is a full numerical solution

Time to end of linear flow: ) Random Fracture swarm Equally spaced
: using actual bottomhole pressure data.
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* Contacted OOIP commonly used for oil wells,
contacted OGIP for gas wells.
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What is it used for?

(Pi - Pw)/qo (PS

0 7. There is a relationship
 Well performance comparison between the &- 1 1
* Forecasting K vt ) parameter and Arps' d=1-- > b=7—7%
» Completion effectiveness & frac optimization b-factor

* Production optimization/drawdown management

« Calibration/starting point for advan. simulation studies
« Identifying well interference and depletion effects

* Reserves booking support

LFP

Remember that if you use the &-parameter parameter to
constrain b-factors used in DCA, you must resolve the 6-
parameter in real time (not material balance, since b can
Time not be below 1 in material balance time).
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RTA Derivatives RTA Integrals Bonus Equations

The logarithmic derivative used in RTA applied directly on The integral method in RTA is applied using the pressure Darcy’s Law Producing GOR
the rate normalized pressure (RNP) data is given integral
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